C O M M U N I C A T I O N S
cationic intermediate whose reactivity is identical to those generated
using other methods. Photoinduced electron transfer has previously
been used to initiate similar radical cation [2+2] cycloadditions of
electron-rich olefins,14 but these reactions have generally required
mercury arc lamps and relatively high loadings of an aromatic nitrile
photosensitizer. Consistent with these reports, we find that when
the cycloaddition of 1 is conducted using 5 mol % of 9,10-
dicyanoanthracene (DCA)14b,c in place of Ru(bpy)32+, the reaction
is considerably slower and produces cyclobutane 2 in only 19%
yield after 3.5 h under otherwise identical conditions. The faster
Acknowledgment. We thank Chris Shaffer and Prof. Robert
McMahon for their assistance performing the direct photolysis
experiment (Table 1, entry 2). We thank the Sloan Foundation,
Beckman Foundation, and Research Corporation for financial
support. The NMR facilities at UW-Madison are funded by the
NSF (CHE-9208463, CHE-9629688) and NIH (RR08389-01).
Supporting Information Available: Experimental procedures and
spectral data for all new compounds are provided. This information is
2+
reaction rates using Ru(bpy)3 may be attributable to its longer
excited state lifetime (600 ns vs 15 ns), its larger extinction
coefficients (13 000 vs 11 500 M-1 cm-1), and its broader absorption
in the visible range compared to DCA.6,15
References
(1) (a) Hansen, T. V.; Stenstrøm, Y. Naturally Occurring Cyclobutanes. In
Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; Elsevier:
Oxford, U.K., 2001; Vol. 5, pp 1-38. (b) Dembitsky, V. M. J. Nat. Med.
2008, 62, 1–33.
(2) For recent reviews, see: (a) Crimmins, M. T. Chem. ReV. 1988, 88, 1453–
1473. (b) Bach, T. Synthesis 1998, 683–708. (c) Lee-Ruff, E.; Mladenova,
G. Chem. ReV. 2003, 103, 1449–1483. (d) Hoffman, N. Chem. ReV. 2008,
108, 1052–1103.
As in the photoreductive enone cycloaddition we previously
reported,4 this method for photooxidative cycloaddition does not
require the use of any specialized photochemical equipment, and
our reactions are typically conducted using a standard household
light bulb. To highlight the efficiency of the Ru(bpy)32+/MV2+
system in promoting the radical cation mediated cycloaddition, we
conducted the cycloaddition of 5 on a gram scale in a laboratory
window using ambient sunlight as the only source of irradiation
(Scheme 3). The cycloaddition still proceeded to completion in 2.5 h
and provided a nearly identical yield of the cyclobutane product as
smaller-scale experiments under more controlled conditions. In
addition, the larger-scale reaction was conducted in undistilled
nitromethane and without rigorous degassing of the solvent. Thus,
these conditions provide a powerful and operationally facile method
to perform photochemical cycloadditions using convenient sources
of visible light including ambient sunlight.
(3) Esser, P.; Pohlmann, B.; Scharf, H.-D. Angew. Chem., Int. Ed. Engl. 1994,
33, 2009–2023.
(4) (a) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc.
2008, 130, 12886–12887. (b) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009,
131, 14604–14605.
(5) (a) Nicewicz, D.; MacMillan, D. W. C. Science 2008, 322, 70–80. (b) Nagib,
D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131,
10875–10877. (c) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J.
J. Am. Chem. Soc. 2009, 131, 8756–8757. (d) Tucker, J. W.; Narayanam,
J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 368–
371. (e) Condie, A. G.; Gonza´lez-Go´mez, J. C.; Stephenson, C. R. J. J. Am.
Chem. Soc. 2010, 132, 1464–1465. (f) Koike, T.; Akita, M. Chem. Lett.
2009, 38, 166–167.
(6) For reviews, see: (a) Kalyanasundaram, K. Coord. Chem. ReV. 1982, 46,
159–244. (b) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser,
P.; von Zelewsky, A. Coord. Chem. ReV. 1988, 84, 85–277. (c) Flamigni,
L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem.
2007, 281, 143–203.
(7) (a) Bell, F. A.; Crellin, R. A.; Fugii, N.; Ledwith, A. J. Chem. Soc., Chem.
Commun. 1969, 251–252. (b) Carruthers, R. A.; Crellin, R. A.; Ledwith,
A. J. Chem. Soc., Chem. Commun. 1969, 252–253.
Scheme 3. Gram-Scale Cycloaddition with Ambient Sunlight
(8) For reviews, see: (a) Ledwith, A. Acc. Chem. Res. 1972, 5, 133–139. (b)
Bauld, N. L.; Bellville, D. J.; Harirchian, B.; Lorenz, K. T.; Pabon, R. A.,
Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H. S.; Marsh, B. J. Acc. Chem.
Res. 1987, 20, 371–378. (c) Bauld, N. L. Tetrahedron 1989, 45, 5307–
5363.
(9) For example: (a) Kalyanasundaram, K.; Kiwi, J.; Gra¨tzel, M. HelV. Chim.
Acta 1978, 61, 2720–2730. (b) Kirch, M.; Lehn, J.-M.; Sauvage, J.-P. HelV.
Chim. Acta 1979, 62, 1345–1383.
(10) (a) Bock, C. R.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1975, 97,
2909–2911. (b) Darwent, J. R.; Kalyanasundaram, K. J. Chem. Soc.,
Faraday Trans. 2 1981, 77, 373–382.
(11) Oxygen is generally believed to quench Ru*(bpy)32+ by energy transfer in
organic solvents. See: (a) Mulazzani, Q. G.; Sun, H.; Hoffman, M. Z.; Ford,
W. E.; Rodgers, M. A. J. J. Phys. Chem. 1994, 98, 1145–1150. (b) Tanielian,
C.; Wolff, C.; Esch, M. J. Phys. Chem. 1996, 100, 6555–6560.
Thus, we have shown that Ru(bpy)32+ is a powerful photocatalyst
for the [2+2] cycloaddition of both electron-rich and electron-
deficient olefins. The versatility of this catalyst arises from the
ability to access either photooxidative or photoreductive reactivity
by choosing the appropriate oxidative or reductive quencher,
respectively. In both regimes, the photophysical properties of
Ru(bpy)32+ enable a variety of inexpensive, readily available sources
of visible light to be utilized, including sunlight. In addition, there
exists a vast wealth of electrochemical literature that describes
synthetically useful organic transformations initiated by one-electron
redox processes. We expect that photocatalytic systems exploiting
3+
(12) The oxidation potential of Ru(bpy)3 is +1.3 V (ref 6a). This should be
sufficient to oxidize 4-methoxy-ꢀ-methylstyrene (+1.2 V) but not ꢀ-me-
thylstyrene itself (+1.7 V). Values from: Yueh, W.; Bauld, N. L. J. Phys.
Org. Chem. 1996, 9, 529–538.
(13) (a) Bauld, N. L.; Pabon, R. J. Am. Chem. Soc. 1983, 105, 633–634. (b)
Bauld, N. L.; Bellville, D. J.; Pabon, R.; Chelsky, R.; Green, G. J. Am.
Chem. Soc. 1983, 105, 2378–232. (c) Bauld, N. L.; Yang, J. Org. Lett.
1999, 1, 773–774. (d) Wiest, O. J. Phys. Chem. A 1999, 13, 7907–7911.
(14) For a recent review, see: (a) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini,
A. Chem. ReV. 2007, 107, 2725–2756. For examples using a 9,10-
dicyanoanthracene photosensitizer, see: (b) Mizuno, K.; Kagano, H.; Otsuji,
Y. Tetrahedron Lett. 1983, 24, 3849–3850. (c) Lewis, F. D.; Kojima, M.
J. Am. Chem. Soc. 1988, 110, 8664–8670.
2+
the reactivity of Ru(bpy)3 should also be able to efficiently
promote similar reactivity. The exploration of this reactivity will
continue to be a focus of research in our lab.
(15) Gould, I. R.; Ege, D.; Moser, J. E.; Farid, S. J. Am. Chem. Soc. 1990, 112,
4290–4301.
JA103934Y
9
8574 J. AM. CHEM. SOC. VOL. 132, NO. 25, 2010