upon treatment with Zn(CH2I)2 (the Wittig-Furukawa
reagent, derived from Et2Zn and CH2I2) or anti-3 in >99:1
dr and 70% isolated yield upon treatment with
F3CCO2ZnCH2I (Shi’s carbenoid, derived from Et2Zn, CH2I2,
and TFA) (Scheme 1).7
allylic carbamate 8, followed by deprotection of the
nitrogen atom. It was envisaged that if a p-silyloxymethyl
group was incorporated in the C(3)-aryl substituent it
would remain inert during the synthesis while allowing
for the p-cyano group within 4 and 5 to be revealed (Figure
2).
Scheme 1. Stereodivergent Cyclopropanation of 1
Figure 2. Retrosynthetic analyses of 4 and 5.
In this manuscript, we report the application of this
methodology to the synthesis of the melanin-concentrating
hormone receptor 1 (MCH-R1) antagonist trans-SCH-A
4, which was developed by Schering-Plough,8 and its
epimer cis-SCH-A 5. In their synthesis of trans-SCH-A
4, Schering-Plough effected the Simmons-Smith cyclo-
propanation of an allylic alcohol, followed by oxidation
of the alcohol to give the corresponding ketone. Subse-
quent diastereoselective reductive amination was then
carried out to install the nitrogen atom.8a To date, there
have not been any other syntheses of trans-SCH-A 4
reported, although an elegant synthesis of cis-SCH-A 5,
involving an intramolecular R-lithiated aziridine cyclo-
propanation process, has recently been reported by Hodg-
son et al. (Figure 1).9
A series of C(3)-phenyl-substituted allylic carbamates
15-17 were selected as model systems in which to screen
both the effects of C(3)-aryl substitution and ring size on
the stereochemical outcome of our stereodivergent cyclo-
propanation protocol. Allylic carbamates 15-17 were pro-
duced in two steps from the corresponding cyclic enones
9-11 via treatment with PhLi to give alcohols 12-14
followed by bismuth-catalyzed SN′ substitution of 12-14
with benzyl carbamate10 to give 15-17 in 55-68% overall
yield (Scheme 2).
Scheme 2. Synthesis of Allylic Carbamates 15-17
In accordance with our previous studies concerning the
stereodivergent cyclopropanation of allylic carbamate 1,
treatment of 16 with Zn(CH2I)2 gave syn-19 in 84%
yield and >99:1 dr. Similar treatment of 16 with
F3CCO2Zn(CH2I)2 gave anti-22 in 99% yield and >99:1
dr (Scheme 3). The relative configuration within syn-19
Figure 1. Structures of trans-SCH-A 4 and cis-SCH-A 5.
(8) (a) McBriar, M. D.; Guzik, H.; Xu, R.; Paruchova, J.; Li, S.; Palani,
A.; Clader, J. W.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O’Neill,
K.; Spar, B.; Weig, B. J. Med. Chem. 2005, 48, 2274. (b) McBriar, M. D.;
Guzik, H.; Shapiro, S.; Xu, R.; Paruchova, J.; Clader, J. W.; O’Neill, K.;
Hawes, B.; Sorota, S.; Margulis, M.; Tucker, K.; Weston, D. J.; Cox, K.
Bioorg. Med. Chem. Lett. 2006, 16, 4262. (c) Kowalski, T. J.; Spar, B. D.;
Weig, B.; Farley, C.; Cook, J.; Ghibaudi, L.; Fried, S.; O’Neill, K.; Del
Vecchio, R. A.; McBriar, M.; Guzik, H.; Clader, J.; Hawes, B. E.; Hwa, J.
Eur. J. Pharmacol. 2006, 535, 182. (d) Kanuma, K.; Omodera, K.;
Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Nagase, Y.; Iida, I.; Yamaguchi,
J.; Semple, G.; Tran, T.-A.; Sekiguchi, Y. Bioorg. Med. Chem. 2006, 14,
3307. (e) McBriar, M. D.; Guzik, H.; Shapiro, S.; Paruchova, J.; Xu, R.;
Palani, A.; Clader, J. W.; Cox, K.; Greenlee, W. J.; Hawes, B. E.; Kowalski,
T. J.; O’Neill, K.; Spar, B. D.; Weig, B.; Weston, D. J.; Farley, C.; Cook,
J. J. Med. Chem. 2006, 49, 2294.
Our strategy for the syntheses of trans-SCH-A 4 and
cis-SCH-A 5 involved elaboration of the requisite dias-
tereoisomers of cyclopropane 6, which could in turn be
accessed via the stereodivergent cyclopropanation of
(6) (a) Aciro, C.; Claridge, T. D. W.; Davies, S. G.; Roberts, P. M.;
Russell, A. J.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 3751. (b) Aciro,
C.; Davies, S. G.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson,
J. E. Org. Biomol. Chem. 2008, 6, 3762. (c) Bond, C. W.; Cresswell, A. J.;
Davies, S. G.; Fletcher, A. M.; Kurosawa, W.; Lee, J. A.; Roberts, P. M.;
Russell, A. J.; Smith, A. D.; Thomson, J. E. J. Org. Chem. 2009, 74, 6735.
(d) Bagal, S. K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.;
Scott, P. M.; Thomson, J. E. Org. Lett. 2010, 12, 136.
(9) Hodgson, D. M.; Humphreys, P. G.; Miles, S. M.; Brierley, C. A. J.;
Ward, J. G. J. Org. Chem. 2007, 72, 10009.
(7) Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson,
J. E. Chem. Commun. 2007, 4029.
(10) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew.
Chem., Int. Ed. 2007, 46, 409.
Org. Lett., Vol. 12, No. 14, 2010
3153