UPDATES
J. L. Acena, V. A. Soloshonok, K. Izawa, H. Liu, Chem.
Rev. 2016, 116, 422–518; c) S. Preshlock, M. Tredwell,
V. Gouverneur, Chem. Rev. 2016, 116, 719–766; d) A.
Koperniku, H. Liu, P. B. Hurley, Eur. J. Org. Chem.
2016, 871–886; e) X. Shao, C. Xu, L. Lu, Q. Shen, Acc.
Chem. Res. 2015, 48, 1227–1236; f) S.-M. Wang, J.-B.
Han, C.-P. Zhang, H.-L. Qin, J.-C. Xiao, Tetrahedron
2015, 71, 7949–7976; g) J.-B. Han, J.-H. Hao, C.-P.
Zhang, H.-L. Qin, Curr. Org. Chem. 2015, 19, 1554–
1565; h) X.-H. Xu, K. Matsuzaki, N. Shibata, Chem.
Rev. 2015, 115, 731–764; i) T. Liang, C. N. Neumann, T.
Ritter, Angew. Chem. 2013, 125, 8372–8423; Angew.
Chem. Int. Ed. 2013, 52, 8214–8264; j) C.-P. Zhang, Q.-
Y. Chen, Y. Guo, J.-C. Xiao, Y.-C. Gu, Chem. Soc. Rev.
2012, 41, 4536–4559.
easily derived from the commercially available per-
fluoroalkyl iodides by a sulfinatodehalogenation reac-
tion, the accessibility of perfluoroalkanesulfonylation
reagents is no longer problematic. Moreover, the
scaled-up reaction and the one-pot synthesis have
demonstrated the practicality of the new method.
This protocol features short reaction times (5–
60 min), mild reaction conditions, the easy prepara-
tion of perfluoroalkanesulfinates, and provides an ef-
ficient way to numerous alkynyl perfluoroalkyl sul-
fones without the use of additives.
Experimental Section
[4] a) C. Rouxel, C. Le Droumaguet, Y. Macꢂ, S. Clift, O.
Mongin, E. Magnier, M. Blanchard-Desce, Chem. Eur.
J. 2012, 18, 12487–12497; b) L. Porrꢃs, O. Mongin, C.
Katan, M. Charlot, T. Pons, J. Mertz, M. Blanchard-
Desce, Org. Lett. 2004, 6, 47–50; c) K. Barta, G. Fran-
ciꢄ, W. Leitner, G. C. Lloyd-Jones, I. R. Shepperson,
Adv. Synth. Catal. 2008, 350, 2013–2023; d) R. Kargbo,
Y. Takahashi, S. Bhor, G. R. Cook, G. C. Lloyd-Jones,
I. R. Shepperson, J. Am. Chem. Soc. 2007, 129, 3846–
3847; e) S. Hikishima, M. Hashimoto, L. Magnowska,
A. Bzowska, T. Yokomatsu, Bioorg. Med. Chem. 2010,
18, 2275–2284; f) T. M. Brꢅtsch, P. Bucher, K.-H. Alt-
mann, Chem. Eur. J. 2016, 22, 1292–1300.
[5] a) I. Ryu, N. Kusumoto, A. Ogawa, N. Kambe, N.
Sonoda, Organometallics 1989, 8, 2279–2281; b) J. S.
Xiang, A. Mahadevan, P. L. Fuchs, J. Am. Chem. Soc.
1996, 118, 4284–4290; c) J. Xiang, P. L. Fuchs, J. Am.
Chem. Soc. 1996, 118, 11986–11987; d) J. Xiang, W.
Jiang, J. Gong, P. L. Fuchs, J. Am. Chem. Soc. 1997,
119, 4123–4129; e) D. Shikanai, H. Murase, T. Hata, H.
Urabe, J. Am. Chem. Soc. 2009, 131, 3166–3167; f) M.
Hanack, B. Wilhelm, Angew. Chem. 1989, 101, 1083–
1084; Angew. Chem. Int. Ed. Engl. 1989, 28, 1057–1059.
[6] a) J. Gong, P. L. Fuchs, Tetrahedron Lett. 1997, 38, 787–
790; b) J. Xiang, W. Jiang, P. L. Fuchs, Tetrahedron
Lett. 1997, 38, 6635–6438; c) J. Xiang, P. L. Fuchs, Tetra-
hedron Lett. 1998, 39, 8597–8600; d) Y. Uenoyama, T.
Fukuyama, K. Morimoto, O. Nobuta, H. Nagai, I. Ryu,
Helv. Chim. Acta 2006, 89, 2483–2494; e) J. Gong, P. L.
Fuchs, J. Am. Chem. Soc. 1996, 118, 4486–4487; f) J.
Bian, M. V. Wingerden, J. M. Ready, J. Am. Chem. Soc.
2006, 128, 7428–7429; g) J. Lei, X. Wu, Q. Zhu, Org.
Lett. 2015, 17, 2322–2325.
Typical Procedure for the Synthesis of 3b
In a nitrogen-filled glovebox, a reaction tube was charged
with phenyl(p-tolylethynyl)iodonium tosylate (1b, 98.1 mg,
0.2 mmol), CF3SO2Na (62.4 mg, 0.4 mmol), and CH2Cl2
(2 mL) with vigorous stirring. The mixture was reacted at
room temperature for 30 minutes, concentrated to dryness,
and purified by flash column chromatography on silica gel
using petroleum ether/ethyl acetate=20:1 (v/v) as eluents to
give 3b as a yellow solid; yield: 42.5 mg (0.17 mmol, 86%).
1H NMR (500 MHz, CDCl3): d=7.58 (d, J=8.2 Hz, 2H),
7.29 (d, J=8.1 Hz, 2H), 2.44 (s, 3H); 19F NMR (471 MHz,
CDCl3): d=À79.7 (s, 3F); 13C NMR (126 MHz, CDCl3): d=
144.8, 133.8, 129.9, 119.0 (q, J=323.9 Hz), 112.6, 101.8, 77.2,
22.0.
Acknowledgements
We thank Wuhan University of Technology, the Natural Sci-
ence Foundation of Hubei Province (China) (2015CFB176),
the “Chutian Scholar” Program from Department of Educa-
tion of Hubei Province (China), and the “Hundred Talent”
Program of Hubei Province for financial support. We thank
Professor David A. Vicic at Leigh University for proofread-
ing this manuscript.
References
[1] a) I. Ojima, Fluorine in Medicinal Chemistry and
Chemical Biology, Wiley, Chichester, 2009; b) P. Kirsch,
Modern Fluoroorganic Chemistry: Synthesis Reactivity,
Applications, 2nd edn., Wiley-VCH, Weinheim, 2013.
[2] a) I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo,
G. Terraneo, F. B. Bombelli, P. Metrangolo, G. Resnati,
Chem. Rev. 2015, 115, 1106–1129; b) H. Yin, A. V.
Zabula, E. J. Schelter, Dalton Trans. 2016, 45, 6313–
6323; c) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J.
Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58,
8315–8359; d) D. OꢀHagan, R. J. Young, Angew. Chem.
2016, 128, 3922–3924; Angew. Chem. Int. Ed. 2016, 55,
3858–3860.
[7] a) R. S. Glass, D. L. Smith, J. Org. Chem. 1974, 39,
3712–3715; b) H. C. Berk, J. E. Franz, Synth. Commun.
1981, 11, 267–271; c) N. Kano, J.-H. Xing, A. Kikuchi,
S. Kawa, T. Kawashima, Phosphorus Sulfur Silicon and
Related Elements 2002, 177, 1685–1687; d) H. Isobe, S.
Sato, T. Tanaka, H. Tokuyama, E. Nakamura, Org.
Lett. 2004, 6, 3569–3571; e) S. Sato, H. Isobe, T.
Tanaka, T. Ushijima, E. Nakamura, Tetrahedron 2005,
61, 11449–11455; f) H. Kawai, Z. Yuan, E. Tokunaga,
N. Shibata, Org. Lett. 2012, 14, 5330–5333; g) X. Zhou,
S. Yu, Z. Qi, X. Li, Sci. China Chem. 2015, 58, 1297–
1301; h) K. D. Barnes, R. Ward, J. Heterocycl. Chem.
1995, 32, 871–874.
[3] a) Y. Zeng, C. Ni, J. Hu, Chem. Eur. J. 2016, 22, 3210–
3223; b) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu,
Adv. Synth. Catal. 0000, 000, 0 – 0
5
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!