at ambient temperature. Subsequently, insoluble material was removed
by filtration and the solvent was removed from the filtrate under
vacuum. The solid residue was purified by column chromatography
(silica gel, CH2Cl2/ethyl acetate 1 : 1, v : v). Yield: 1.18 g (1.02 mmol,
88%); 1H NMR (400.1 MHz, CDCl3, ppm): d = 7.55 (m, 12H,
phenylene-H), 7.42 (m, 3H, bdt-H), 7.30 (m, 6H, bdt-H), 3.43
(m, 6H, CH(CH3)2), 2.92 (s, br, 3H, N–H), 1.34 (d, 3J = 6.6 Hz,
18H, CH(CH3)2), 1.16 (d, 3J = 6.6 Hz, 18H, CH(CH3)2). 13C NMR
(100.6 MHz, CDCl3, ppm): d = 170.8 (C(O)NH), 168.1 (triazene-C),
149.6, 146.8, 139.0, 137.5, 133.0, 132.9, 132.0, 129.2, 125.6, 124.5
(phenylene- and bdt-C), 44.7 (SCH), 40.0 (SCH), 26.9 (CH(CH3)2),
2 J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
VCH, Weinheim, 1995.
3 D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., 1995, 95,
2229.
4 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100,
853.
5 M. M. Conn and J. Rebek, Jr., Chem. Rev., 1997, 97, 1647.
6 M. A. Mateos-Timoneda, M. Crego-Calama and D. N. Reinhoudt,
Chem. Soc. Rev., 2004, 33, 363.
7 T. D. Hamilton and L. R. MacGillivray, Cryst. Growth Des., 2004,
4, 419.
8 M. Albrecht, Chem. Rev., 2001, 101, 3457.
9 T. Kreickmann and F. E. Hahn, Chem. Commun., 2007,
1111.
26.5 (CH(CH3)2). MS (MALDI, positive ions): m/z = 1156 [M + H]+
1178 [M + Na]+
,
.
Preparation of ligand H6-1: dry, freshly distilled THF (60 mL) was
added to a mixture of 2,4,6-tris{p-[2,3-di(isopropylmercapto)benzamido-
anilino]}-1,3,5-triazine (1.18 g, 1.02 mmol), sodium (352 mg, 15.3 mmol)
and naphthalene (979 mg, 7.65 mmol). The reaction mixture was
stirred for 12 h at ambient temperature. Subsequently, methanol
(10 mL) was added to destroy unreacted sodium. All solvents were
then removed under vacuum and the solid residue was dissolved in
degassed water and washed three times with degassed diethyl ether
(20 mL each). Insoluble material was removed by filtration. The clear
aqueous solution was treated dropwise with HCl (37%) until a white
precipitate formed. The precipitate was isolated by filtration and
washed with water and diethyl ether. The solid residue was dried
under vacuum. Yield: 755 mg (0.84 mmol, 82%); 1H NMR (400.1 MHz,
DMF-d7, ppm): d = 11.0 (s, br, 3H, N-H), 10.55 (s, 3H, N-H), 7.88
(s, br, 12H, phenylene-H), 7.67 (dd, 3J = 7.7, 4J = 1.0, 3H, bdt-H),
7.49 (dd, 3J = 7.7, 4J = 1.0, 3H, bdt-H), 7.17 (t, 3J = 7.7, 3H, bdt-H),
5.61 (s, br, 6H, S-H). 13C NMR (100.6 MHz, DMF-d7, ppm): d =
168.0 (C(O)NH), 137.4 (triazine-C), 135.0, 134.9, 132.1, 130.9, 128.4,
126.7, 126.3, 126.0, 125.4, 121.1 (phenylene- and bdt-C). MS
10 L. Garel, J.-P. Dutasta and A. Collet, Angew. Chem., Int. Ed.
Engl., 1993, 32, 1169.
11 J. C. Sherman and D. J. Cram, J. Am. Chem. Soc., 1989, 111,
4527.
12 F. Hof, S. L. Craig, C. Nuckolls and J. Rebek, Jr., Angew. Chem.,
Int. Ed., 2002, 41, 1488.
13 W.-Y. Sun, M. Yoshizawa, T. Kusukawa and M. Fujita, Curr.
Opin. Chem. Biol., 2002, 6, 757.
14 (a) C. Bruckner, R. E. Powers and K. N. Raymond, Angew. Chem.,
¨
Int. Ed., 1998, 37, 1837; (b) D. L. Caulder and K. N. Raymond,
Acc. Chem. Res., 1999, 32, 975; (c) D. L. Caulder and
K. N. Raymond, J. Chem. Soc., Dalton Trans., 1999, 1185.
15 (a) M. Albrecht, I. Janser, S. Meyer, P. Weis and R. Frohlich,
¨
Chem. Commun., 2003, 2854; (b) M. Albrecht, I. Janser,
J. Runsink, G. Raabe, P. Weis and R. Frohlich, Angew. Chem.,
¨
Int. Ed., 2004, 43, 6662; (c) M. Albrecht, I. Janser and R. Frohlich,
¨
Chem. Commun., 2005, 157; (d) M. Albrecht, I. Janser, S. Burk and
P. Weis, Dalton Trans., 2006, 2875; (e) M. Albrecht and
(MALDI, positive ions): m/z = 904 [M + H]+, 926 [M + Na]+
.
R. Frohlich, Bull. Chem. Soc. Jpn., 2007, 80, 797;
¨
Preparation of (Me3PhN)4[Ti2(1)2]: a sample of Ti(OPr)4 (15.7 mg,
0.055 mmol) was added to a solution of H6-1 (50 mg, 0.055 mmol) and
Na2CO3 (11.7 mg, 0.110 mmol) in degassed methanol (20 mL). The
solution was stirred under argon at ambient temperature for 12 h and
filtered. Addition of Me3PhNCl (18.9 mg, 0.11 mmol) to the filtrate
yielded a dark red precipitate, which was isolated by filtration, washed
with methanol (2 ꢃ 10 mL) and dried under vacuum. Yield: 57 mg
(0.03 mmol, 55%); 1H NMR (400 MHz, DMF-d7, ppm): d = 14.27
(s, 6H, (C(O)NH)), 7.78 (d, 3J = 8.0 Hz, 8H, Me3NPh-H), 7.71
(d, 3J = 8.6 Hz, 12H, phenylene-H), 7.55 (d, 3J = 8.6 Hz, 12H,
phenylene-H), 7.52 (t, 3J = 8.0 Hz, 8H, Me3NPh-H), 7.41 (m, 4H,
Me3NPh-H), 7.11 (dd, 3J = 7.7 Hz, 4J = 1.2 Hz, 6H, bdt-H), 6.42
(dd, 3J = 7.7 Hz, 4J = 1.2 Hz, 6H, bdt-H), 6.18 (t, 3J = 7.7 Hz, 6H,
bdt-H), 3.56 (s, 36H, PhNMe-H); 13C NMR (400 MHz, DMF-d7, ppm):
d = 167.7 (C(O)NH), 163.5 (triazine-C), 160.1, 157.5 (C–S), 147.5
(Me3NPh-C), 135.9, 134.9 (phenylene-C), 130.7, 130.6, 120.3
(Me3NPh-C), 119.6, 119.5 (phenylene-C), 114.7, 114.1, 113.4, 112.6
(bdt-C), 57.1 (PhNMe3-C); MS (ESI, negative ions) m/z: 473.0
[Ti2(1)2]4ꢀ, 631.0 {H[Ti2(1)2]}3ꢀ, 676.0 {(Me3PhN)[Ti2(1)2]}3ꢀ, 1082.1
(f) M. Albrecht, S. Burk, P. Weis, C. A. Schalley and M. Kogej,
Synthesis, 2007, 3736.
16 (a) W. R. Harris, F. L. Weitl and K. N. Raymond, J. Chem. Soc.,
Chem. Commun., 1979, 177; (b) K. N. Raymond and C. J. Carrano,
Acc. Chem. Res., 1979, 12, 183; (c) K. N. Raymond, E. A.
Dertz and S. S. Kim, Proc. Natl. Acad. Sci. U. S. A., 2003, 100,
3584; (d) A. R. Bulls, C. G. Pippin, F. E. Hahn and
K. N. Raymond, J. Am. Chem. Soc., 1990, 112, 2627;
(e) T. M. Garrett, T. J. McMurry, M. W. Hosseini, Z. E. Reyes,
F. E. Hahn and K. N. Raymond, J. Am. Chem. Soc., 1991, 113,
2965.
17 B. Birkmann, R. Frohlich and F. E. Hahn, Chem.–Eur. J., 2009,
15, 9325.
¨
18 B. Birkmann, W. W. Seidel, T. Pape, A. W. Ehlers,
K. Lammertsma and F. E. Hahn, Dalton Trans., 2009, 7350.
19 (a) F. E. Hahn and W. W. Seidel, Angew. Chem., Int. Ed. Engl.,
1995, 34, 2700; (b) H. V. Huynh, C. Schulze Isfort, W. W. Seidel,
T. Lugger, R. Frohlich, O. Kataeva and F. E. Hahn, Chem.–Eur.
¨
¨
J., 2002, 8, 1327; (c) H. V. Huynh, W. W. Seidel, T. Lugger,
¨
R. Frohlich, B. Wibbeling and F. E. Hahn, Z. Naturforsch., B,
{(Me3PhN)2[Ti2(1)2]}2ꢀ
.
¨
z Crystal data for (Me3PhN)4[Ti2(1)2]ꢁ2DMSOꢁ6DMF: C142H164N28
-
2002, 57, 1401; (d) F. E. Hahn, C. Schulze Isfort and T. Pape,
Angew. Chem., Int. Ed., 2004, 43, 4807; (e) T. Kreickmann,
C. Diedrich, T. Pape, H. V. Huynh, S. Grimme and F. E. Hahn,
J. Am. Chem. Soc., 2006, 128, 11808; (f) C. Schulze Isfort,
T. Kreickmann, T. Pape, R. Frohlich and F. E. Hahn, Chem.–Eur.
¨
J., 2007, 13, 2344; (g) F. E. Hahn, M. Offermann, C. Schulze Isfort,
O14S14Ti2, M = 3031.65, T = 153(1) K, l = 1.54178 A, m(Cu-Ka) =
3.167 mmꢀ1, triclinic, a = 14.6767(10), b = 21.0095(12), c = 25.8753(8) A,
a = 84.555(4)1, b = 78.851(4)1, g = 87.166(4)1, V = 7788.8(8) A3,
ꢀ
space group P1, Z = 2, 45 721 measured intensities, 26 396 unique
intensities (Rint = 0.0687), all reflections used in refinement against
|F2|, R = 0.0900, wR = 0.2586 (for all data).
T. Pape and R. Frohlich, Angew. Chem., Int. Ed., 2008, 47, 6794.
¨
20 K. Takagi, T. Hattori, H. Kunisada and Y. Yuki, J. Polym. Sci.,
Part A: Polym. Chem., 2000, 38, 4385.
1 J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Voegtle and
J.-M. Lehn, Comprehensive Supramolecular Chemistry, Pergamon,
Oxford, 1996.
21 M. Konemann, W. Stuer, K. Kirschbaum and D. M. Giolando,
¨
Polyhedron, 1994, 13, 1415.
¨
ꢂc
This journal is The Royal Society of Chemistry 2010
3746 | Chem. Commun., 2010, 46, 3744–3746