Tobisu et al.
JOCArticle
SCHEME 1. 2-(1H-Indol-3-yl)acetic Acid Substructure Found
in Natural and Non-natural Products
examined for their ability to promote the cyclization process,
which sheds light on the nature of the key addition reaction
to isocyanide.
Results and Discussion
On the basis of the potential electrophilic reactivity of iso-
cyanides,9 we envisioned that the cyclization of 2 to 4 could
be initiated by the addition of nucleophilic boron species10 to
the isocyano group in 2. Guided by several reports on copper-
catalyzed nucleophilic borylation of various electrophiles
(unsaturated carbonyls,11 aldehydes and ketones,12 imines,13
allylic and propargylic carbonates,14 and others15), we initially
examined the reaction of isocyanide 5a16 with diboronate 6 in
the presence of a copper catalyst (Table 1). We found that the
borylated product 7a was indeed obtained with the CuOAc/
PPh3 catalytic system at ambient temperature (entry 1). Consis-
tent with previous reports,11 protic additives improved the yield of
7a, although it was accompanied by the formation of deborylated
product 8a (entries 2-4). Finally, decreasing the amount of
MeOH to 1 equiv relative to 5a completely suppressed the
formation of 8a and afforded 7a quantitatively (entry 6).
The reaction is presumably initiated by the addition of boryl-
copper A, which can be generated in situ by the transmetalation
of CuOAc with 6 to the isocyano moiety in 5a (Scheme 3). Intra-
molecular 1,4-addition of the resultant imidoylcopper B leads to
the formation of copper enolate C. Since the transmetalation of C
with 6 is relatively slow, the addition of MeOH is required to
effectively liberate borylated product E and to generate Cu-OMe
D, which serves as a more competent precursor of A.11h
SCHEME 2. 2-Metalated Indoles from 2-Alkenylaryl Isocyanides
(10) For an excellent introduction to nucleophilic boryl species, see: (a)
Segawa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2008,
130, 16069. (b) Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun. 2009, 3987.
(11) (a) Ito, H.; Yamanaka, H.; Tateiwa, J.-i.; Hosomi, A. Tetrahedron
Lett. 2000, 41, 6821. (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem.
Lett. 2000, 29, 982. (c) Takahashi, K.; Ishiyama, T.; Miyaura, N. J.
Organomet. Chem. 2001, 625, 47. (d) Mun, S.; Lee, J.-E.; Yun, J. Org. Lett.
2006, 8, 4887. (e) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. (f)
Lee, J.-E.; Kwon, J.; Yun, J. Chem. Commun. 2008, 733. (g) Lillo, V.; Prieto,
from tryptophan. This paper reports the catalytic synthesis
of 2-borylindole 4 through the nucleophilic addition of in
situ generated borylcopper(I) species to isocyanide 2. The
reactivity of this new family of organoboron compounds in
several catalytic reactions, such as Suzuki-Miyaura cou-
pling, is investigated, and its application to the rapid synth-
esis of paullone is also demonstrated. In addition, in situ
generated aryl-, hydride, and silylcopper(I) species are
ꢀ ꢀ
A.; Bonet, A.; Dıaz-Requejo, M. M.; Ramırez, J.; Parez, P. J.; Fernandez, E.
´ ´
Organometallics 2008, 28, 659. (h) Dang, L.; Lin, Z.; Marder, T. B. Organo-
metallics 2008, 27, 4443. (i) Sim, H.-S.; Feng, X.; Yun, J. Chem.;Eur. J.
2009, 15, 1939. (j) Feng, X.; Yun, J. Chem. Commun. 2009, 6577. (k) Lillo, V.;
ꢀ
Bonet, A.; Fernandez Dalton Trans. 2009, 2899. (l) Chea, H.; Sim, H.-S.;
Yun, J. Adv. Synth. Catal. 2009, 351, 855. (m) Fleming, W. J.; Muller-Bunz,
€
ꢀ
H.; Lillo, V.; Fernandez, E.; Guiry, P. J. Org. Biomol. Chem. 2009, 7, 2520. (n)
Chen, I. H.; Yin, L.; Itano, W.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
€
2009, 131, 11664. (o) Schiffner, J. A.; Muther, K.; Oestreich, M. Angew.
Chem., Int. Ed. 2010, 49, 1194.
(12) (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128,
11036. (b) McIntosh, M. L.; Moore, C. M.; Clark, T. B. Org. Lett. 2010, 12, 1996.
(13) Beenen, M. A.; An, C.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 6910.
(14) (a) Ramachandran, P. V.; Pratihar, D.; Biswas, D.; Srivastava, A.;
Ram Reddy, M. V. Org. Lett. 2004, 6, 481. (b) Ito, H.; Kawakami, C.;
Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. (c) Ito, H.; Ito, S.; Sasaki,
Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856. (d) Ito,
H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 15774. (e) Ito, H.;
Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M. Angew. Chem., Int.
Ed. 2008, 47, 7424. (f) Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M.
Angew. Chem., Int. Ed. 2010, 49, 560. (g) Ito, H.; Toyoda, T.; Sawamura, M.
J. Am. Chem. Soc. 2010, 132, 5990.
(15) Styrenes: (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics
2006, 25, 2405. (b) Dang, L.; Zhao, H.; Lin, Z.; Marder, T. B. Organome-
tallics 2007, 26, 2824. (c) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 3160. 1,3-Dienes: (d) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J.
Am. Chem. Soc. 2010, 132, 1226. CO2: (e) Laitar, D. S.; Muller, P.; Sadighi,
J. P. J. Am. Chem. Soc. 2005, 127, 17196. (f) Zhao, H.; Lin, Z.; Marder, T. B.
J. Am. Chem. Soc. 2006, 128, 15637. Alkynes: (g) Lee, Y.; Jang, H.;
Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234. (h) Kim, H. R.; Jung,
I. G.; Yoo, K.; Jang, K.; Lee, E. S.; Yun, J.; Son, S. U. Chem. Commun. 2010,
758.
(6) Selected examples: (a) Aimi, N.; Uchida, N.; Ohya, N.; Hosokawa,
€
H.; H., T.; Sakai, S.-i.; Mendonza, L. A.; Polz, L.; Stockigt, J. Tetrahedron
Lett. 1991, 32, 4949. (b) Williams, D. E.; Davies, J.; Patrick, B. O.; Bottriell,
H.; Tarling, T.; Roberge, M.; Andersen, R. J. Org. Lett. 2008, 10, 3501. (c)
Shen, T. Y.; Winter, C. A. Adv. Drug Res. 1977, 12, 90. (d) Schultz, C.; Link,
A.; Leost, M.; Zaharevitz, D. W.; Gussio, R.; Sausville, E. A.; Meijer, L.;
Kunick, C. J. Med. Chem. 1999, 42, 2909. (e) Trotter, B. W.; Quigley, A. G.;
Lumma, W. C.; Sisko, J. T.; Walsh, E. S.; Hamann, C. S.; Robinson, R. G.;
Bhimnathwala, H.; Kolodin, D. G.; Zheng, W.; Buser, C. A.; Huber, H. E.;
Lobell, R. B.; Kohl, N. E.; Williams, T. M.; Graham, S. L.; Dinsmore, C. J.
Bioorg. Med. Chem. Lett. 2001, 11, 865. (f) Yang, Z.; Reiling, S.; Nieduzak,
T. R.; Mathew, R. M.; Jackson, S.; Harris, K. J. PCT Int. Appl. WO 2008014186
Chem. Abstr. 2008, 148, 214951.
(7) A seminal report: (a) Fukuyama, T.; Chen, X.; Peng, G. J. Am. Chem.
Soc. 1994, 116, 3127A review:. (b) Tokuyama, H.; Fukuyama, T. Chem. Rec.
2002, 2, 37.
ꢀ
(8) A review of indole synthesis from isocyanides: Campo, J.; Garcia-
Valverde, M.; Marcaccini, S.; Rojo, M. J.; Torrroba, T. Org. Biomol. Chem.
2006, 4, 757.
(9) (a) Niznik, G. E.; Morrison, W. H.; Walborsky, H. M. J. Org. Chem.
1974, 39, 600. (b) Murakami, M.; Ito, H.; Ito, Y. J. Org. Chem. 1988, 53,
4158. (c) Suginome, M.; Fukuda, T.; Ito, Y. Org. Lett. 1999, 1, 1977. (d)
Tobisu, M.; Yamaguchi, S.; Chatani, N. Org. Lett. 2007, 9, 3351.
(16) The starting isocyanides used in this study can readily be prepared from
the corresponding 2-iodoanilines. See the Supporting Information for details.
4842 J. Org. Chem. Vol. 75, No. 14, 2010