Brief Articles
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 1 223
residue purified by means of preparative HPLC (HyperCarb column
Supporting Information Available: Biology methods, analytical
methods, and HPLC spectral data for compounds 9, 13, 21, 24,
and 25; NMR data for compounds 3 and 10. This material is
and 10-100% CH3CN in H2O) to give 21 (0.024 g, 68%). 1H NMR
(DMSO-D ): δ 7.68 (d, J ) 7.5 Hz, 1H), 7.26 (s, 2H), 6.03 (d, J )
6
3.8 Hz, 1H), 5.73 (d, J ) 7.5 Hz, 1H), 5.65 (br. s, 1H), 5.58 (br.
s, 1H), 4.31 (br. s, 1H), 3.55 (q, J ) 11.7 Hz, 2H), 2.52 (dd, J )
7.5 and 14 Hz, 1H), 1.84 (dd, J ) 4.0 and 14 Hz, 1H). HRMS
(ES+) calcd for C9H13N6O4 [M + H]+ 269.0998; found 269.1010.
References
(1) Wasley, A.; Alter, M. J. Epidemiology of Hepatitis C: Geographical
Differences and Temporal Trends. Semin. LiVer Dis. 2000, 20, 1.
(2) Fried, M. W.; Shiffman, M. L.; Reddy, K. R.; Smith, C.; Marinos,
G.; Gonc¸ales, F. L., Jr.; Ha¨ussinger, D.; Diago, M.; Carosi, G.;
Dhumeaux, D.; Craxi, A.; Lin, A.; Hoffman, J.; Yu, J. Peginterferon
alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl.
J. Med. 2002, 347, 975–982.
(3) Pierra, C.; Amador, A.; Benzaria, S.; Cretton-Scott, E.; D’Amours,
M.; Mao, J.; Mathieu, S.; Moussa, A.; Bridges, E. G.; Standring, D. N.;
Sommadossi, J.-P.; Storer, R.; Gosselin, G. J. Med. Chem. 2006, 48,
6614–6620.
(4) Clark, J. L.; Hollecker, L.; Mason, J. C.; Stuyver, L. J.; Tharnish,
P. M.; Lostia, S.; McBrayer, T. R.; Schinazi, R. F.; Watanabe, K. A.;
Otto, M. J.; Furman, P.; Stec, W. J.; Patterson, S. E.; Pankiewicz,
K. W. Design, synthesis and antiviral activity of 2′-deoxy-2′-fluoro-
2′-C-methylcytidine, a potent inhibitor of hepatitis C replication.
J. Med. Chem. 2005, 48, 5504–5508.
(5) Smith, D. B.; Martin, J. A.; Klumpp, K.; Baker, S. J.; Blomgren, P. A.;
Devos, R.; Granycome, C.; Hang, J.; Hobbs, C. J.; Jiang, W.-R.;
Laxton, C.; Le Pogam, S.; Leveque, V.; Ma, H.; Maile, G.; Merrett,
J. H.; Pichota, A.; Sarma, K.; Smith, M.; Swallow, S.; Symons, J.;
Vesey, D.; Najera, I.; Cammack, N. Design, synthesis and antiviral
properties of 4′-substituted ribonucleosides as inhibitors of hepatitis
C virus placation: The discovery of R1479. Bioorg. Med. Chem. Lett.
2007, 17, 2570–2576.
(6) Klumpp, K.; Leveque, V.; Le Pogam, S.; Ma, H.; Jiang, W.-R.; Kang,
H.; Granycome, C.; Singer, M.; Laxton, C.; Hang, J. Q.; Sarma, K.;
Smith, D. B.; Heindl, D.; Hobbs, C. J.; Merrett, J. H.; Symons, J.;
Cammack, N.; Martin, J. A.; Devos, R.; Najera, I. The Novel
Nucleoside Analog R1479 (4′-Azidocytidine) Is a Potent Inhibitor of
NS5B-dependent RNA Synthesis and Hepatitis C Virus Replication
in Cell Culture. J. Biol. Chem. 2006, 281, 3793–3799.
(7) Pockros, P. J.; Nelson, D.; Godofsky, E.; Rodriguez-Torres, M.;
Everson, G.; Fried, M. W.; Ghalib, R. H.; Harrison, S. A.; Nyberg,
L. M.; Schiffman, M. L.; Hill, G. Z.; Chan, A. Robust synergistic
antiviral effect of R1626 in combination with peginterferon alfa-2a
(40kD), with or without ribavirinsinterim analysis results of Phase
2A study. Hepatology 2007, 46 (Suppl. 4), 311A.
1-[4′-Azido-3′,5′-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-
ꢀ-D-ribofurnosyl]-4-N-benzoylcytosine (22). A mixture containing
1-(4′-azido-ꢀ-D-ribofuranosyl)-4-N-benzoylcytosine (1.8 g, 4.64
mmol), prepared from 1-(4′-azido-ꢀ-D-ribofurnosyl)cytosine 3,11
and TIPDSCl (2.25 mL, 7.04 mmol) in pyridine (45 mL) was stirred
at room temperature for 48 h. The reaction was quenched with
methanol and the solvents were evaporated to dryness under reduced
pressure. The residue was partitioned between CH2Cl2 and saturated
aqueous NaHCO3 solution. The combined organic layer was dried
(Na2SO4) and evaporated to dryness under reduced pressure.
Chromatography (0.5-2% ethanol in CH2Cl2) gave 22 (0.724 g,
25%). 1H NMR (CDCl3): δ 8.64 (s, 1H), 7.90-7.83 (m, 3H),
7.65-7.51 (m, 4H), 5.75 (s, 1H), 5.03 (d, J ) 6.2 Hz, 1H), 4.49
(dd, J ) 1.8 and 6.1 Hz, 1H), 4.22 (d, J ) 12.2 Hz, 1H), 4.03 (d,
J ) 12.2 Hz, 1H), 3.24 (d, J ) 2.7 Hz, 1H), 1.13-1.06 (m, 28H).
MS (ES+) [M + H]+ m/z 527.
1-[4′-Azido-2′-keto-3′,5′-O-(1,1,3,3-tetraisopropyldisiloxane-
1,3-diyl)-ꢀ-D-ribofurnosyl]-4-N-benzoylcytosine (23). Dess-
Martin periodinane (0.672 g, 1.59 mmol) was dissolved in CH2Cl2
(40 mL) and added dropwise to a cooled solution of 22 (0.5 g,
0.79 mmol) in CH2Cl2 (48 mL). The resulting mixture was stirred
for 18 h at room temperature. A solution, containing 0.1 M Na2SO3,
in saturated aqueous NaHCO3 (150 mL) was added and the mixture
was vigorously stirred for 10 min. The product was extracted with
CH2Cl2, dried (Na2SO4), and evaporated to dryness under reduced
pressure. Chromatography (0.5-1% ethanol in CH2Cl2) gave 23
(0.414 g, 83%) as a white solid. 1H NMR (CDCl3): δ 8.72 (s, 1H),
7.87-7.85 (m, 2H), 7.65-7.50 (m, 5H), 5.60 (s, 1H), 5.16 (s, 1H),
4.31 (d, J ) 12.1 Hz, 1H), 4.21 (d, J ) 12.1 Hz, 1H), 1.16-1.06
(m, 28H). MS (ES+) [M + H]+ m/z 629.
1-(4′-Azido-2′-ꢀ-methyl-ꢀ-D-ribofurnosyl)cytosine (24) and
1-(4′-azido-2′-r-methyl-ꢀ-D-arabinofurnosyl)cytosine (25). To a
stirred solution of 2′-ketone 23 (0.05 g, 1 mmol) in THF (5 mL)
was added 2 M solution of trimethylaluminum in toluene (0.55 mL,
1.1 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for
1 h, then quenched with water (0.5 mL) and filtered through a pad
of celite to remove aluminum hydroxide. Solvents were evaporated
to dryness under reduced pressure. The residue was dissolved in
methanol (5 mL) acidified with 1 drop of 4 M HCl in dioxane.
After 1 h, the reaction mixture was saturated with ammonia in
methanol (1 mL) and stirred overnight at room temperature. The
resulting 1:1 mixture of 2′-Me isomers 24 and 25 was separated
by preparative HPLC on a Hypercarb column and 10-100%
gradient CH3CN in H2O.
24 (7.42 mg, 31%). 1H NMR (DMSO-d6): δ 7.79 (d, J ) 7.6 Hz,
1H, 6-H), 7.22; 7.15 (2s, 2 H, 4-NH2), 6.18 (s, 1H, 1′R-H), 5.78 (s,
1H, 3′R-OH), 5.71 (d, J ) 7.5 Hz, 1H, 5-H), 5.29 (s, 1H, 5′-OH), 5.22
(s, 1H, 2′R-OH), 3.89 (s, 1H, 3′ꢀ-H), 3.62-3.53 (m, 2H, 5′-H2), 0.95
(s, 3H, 2′ꢀ-CH3). 13C NMR (DMSO-d6): δ 166.36 (C-4), 157.14 (C-
2), 141.26 (C-6), 98.19 (C-4′), 95.04 (C-5), 94.16 (C-2′), 77.78 (C-
1′), 73.38 (C-3′), 61.89 (C-5′), 19.00 (CH3-2′). HRMS (ES+) calcd
for C10H15N6O5 [M + H]+ 299.1117; found 299.1103.
(8) Klumpp, K.; Kalayanov, G.; Ma, H.; Le Pogam, S.; Leveque, V.; Jiang,
W.-R.; Inocencio, N.; De, Witte.; Rajyaguru, S.; Tai, E.; Chanda, S.; Irwin,
M. R.; Sund, C.; Winquist, A.; Maltseva, T.; Eriksson, S.; Usova, E.;
Smith, M.; Alker, A.; Najera, I.; Cammack, N.; Martin, J. A.; Johansson,
N. G.; Smith, D. B. 2′-Deoxy-4′-azido nucleoside analogs are highly potent
inhibitors of HCV replication despite the lack of 2′-alpha hydroxyl groups.
J. Biol. Chem. 2008, 283, 2167–2175.
(9) Perrone, P.; Luoni, G. M.; Kelleher, M. R.; Daverio, F.; Angell,
A.; Mulready, S.; Congiatu, C.; Rajyaguru, S.; Martin, J. A.;
Leveˆque, V.; Le Pogam, S.; Najera, I.; Klumpp, K.; Smith, D. B.;
McGuigan, C. Application of the phosphoramidate ProTide ap-
proach to 4′-azidouridine confers submicromolar potency versus
hepatitis C virus on an inactive nucleoside. J. Med. Chem. 2007,
50, 1840–1849.
(10) Perrone, P.; Daverio, F.; Valente, R.; Rajyaguru, S.; Martin, J. A.;
Le´veˆque, V.; Le Pogam, S.; Najera, I.; Klumpp, K.; Smith, D. B.;
McGuigan, C. First example of phosphoramidate approach applied to
a 4′-substituted purine nucleoside (4′-azidoadenosine): conversion of
an inactive nucleoside to a submicromolar compound versus hepatitis
C virus. J. Med. Chem. 2007, 50, 5463–5470.
(11) Connolly, T. K.; Durkin, K.; Sarma, K.; Zhu, J. Processes for Preparing
4′-Azido Nucleoside Derivatives. Patent WO 2005/000864, 2005.
(12) Miah, M.; Reese, C. B.; Song, Q.; Sturdy, Z.; Neidle, S.; Simpson,
I. J.; Read, M.; Rayner, E. 2′,3′-Anhydrouridine. A useful synthetic
intermediate. J. Chem. Soc., Perkin Trans. 1 1998, 3277–3283.
(13) Divakar, K. J.; Reese, C. B. 4-(1,2,4-Triazol-1-yl)-and 4-(3-nitro-1,2,4-
triazo-1-yl)-1-(ꢀ-D-2,3,5-tri-O-acetylarabinofuranosyl)pyrimidin-2(1H)-
ones. Valuable intermediates in the synthesis of derivatives of 1-(ꢀ-
D-arabinofuranosyl)cytosine (AraC). J. Chem. Soc., Perkin Trans. 1
1982, 1171–1176.
25 (8.07 mg, 34%). 1H NMR (DMSO-d6): δ 7.49 (d, J ) 7.6 Hz,
1H, 6-H), 7.15; 7.09 (2s, 2H, 4-NH2), 6.11 (s, 1H, 1′R-H), 5.99 (d, J
) 5.7 Hz, 1H, 3′R-OH), 5.57 (d, J ) 7.5 Hz, 1H, 5-H), 5.49 (s, 1H,
5′-OH), 5.29 (s, 1H, 2′ꢀ-OH), 3.94 (d, J ) 4.6 Hz, 1H, 3′ꢀ-H), 3.66 (s,
2H, 5′-H2), 1.20 (s, 3H, 2′R-CH3). 13C NMR (DMSO-d6): δ ) 166.23
(C-4), 155.95 (C-2), 143.93 (C-6), 98.64 (C-4′), 93.54 (C-5), 89.06
(C-1′), 79.98 (C-2′), 78.52 (C-3′), 64.36 (C-5′), 21.54 (CH3-2′). HRMS
(ES+) calcd for C10H15N6O5 [M + H]+ 299.1117; found 299.1104.
(14) Verheyden, J. P. H.; Moffat, J. G. 4′-Substituted Nucleosides. I.
Synthesis of 4′-Methoxyuridine and Related Compounds. J. Am. Chem.
Soc. 1975, 97, 4386–4395.
JM800981Y