686
L.-L. SHEN ET AL.
30.4 (CH2), 32.4(CH2), 62.3 (CH2CH3), 80.1 (CHO), 82.5 (PC O), 92.4 (PCN), 160.0
(PC N); 31P NMR: 1.1 (αP), −3.1 (βP), 19.2 (γ P).
7c: Yield 56.1%, anal. calcd. found(calcd): C 44.59 (44.64), H 6.35 (6.34), N 5.98
(6.01), 1H NMR: 8.19–8.23 (d, J = 15 Hz, 2H), 7.51–7.55 (d, J = 22 Hz, 2H), 6.06 (dd, J =
35 Hz, 1H), 4.83 (m, 4H), 4.21 (m, 5H), 1.23–1.37 (m, 30H), 13C NMR: 14.1 (CH2CH3),
22.4 (CH3), 22.5 (CH3), 30.5 (CH), 62.4 (CH2CH3), 71.5 (CH), 83.3 (CHP), 92.0 (PC O),
123.2, 127.5, 145.7, 154.6 (Carom), 162.0 (PC N); 31P NMR: 0.5 (αP), −3.3 (βP), 17.7
(γ P).
7d: Yield 78.8%, anal. calcd. found(calcd): C 41.49 (41.51), H 6.80 (6.81), N 4.38
1
(4.40), H NMR: 5.31–5.45 (dd, J = 18 Hz, 1H), 4.77 (m, 4H), 4.13–4.20 (m, 5H),
3.75–3.77 (s, 3H), 1.27–1.37 (m, 30H),13C NMR: 14.5 (CH2CH3), 22.4 (CH3), 32.5 (CH),
50.7 (OCH3), 62.7 (CH2CH3), 72.1 (CHO), 79.2 (PCHO), 88.6 (PC N), 162.5 (PC N),
175.4 (C O); 31P NMR: 0.03 (αP), −3.3 (βP), 17.7 (γ P); IR:3268 2957 1739 1649 1579
1490 1439 1204 924 769cm−1; ESI-MS: 637.3 [M+H]+.
7e: Yield 56.1%, anal. calcd. found(calcd): C 43.1 (43.16), H 5.96 (5.99), N 3.85
(3.87), 1H NMR: 7.24–7.37 (m, 3H), 6.19–6.32 (dd, J = 27 Hz, 1H), 4.67–4.87 (m, 4H),
4.15–4.31 (m, 5H), 1.20–1.39 (m, 30H), 13C NMR: 14.6 (CH2CH3), 22.3 (CH3), 22.5
(CH3), 61.7 (CH2CH3), 72.2 (CHO), 82.8 (PCHO), 91.6 (PC N), 162.0 (PC N), 126.6,
128.8, 131.8, 132.7, 147.4 (Carom); 31P NMR: 0.9 (αP), −3.2 (βP), 18.5 (γ P).
7f: Yield 35.3%, anal. calcd. found(calcd): C 44.65 (44.64), H 6.37 (6.34), N 6.03
(6.01),1H NMR: 8.14–8.18 (d, J = 27 Hz, 2H), 7.54–7.66 (dd, J = 24 Hz, 2H), 5.95–6.09
(dd, J = 22Hz, 1H), 4.69 (m, 4H), 4.14–4.36 (m, 5H), 1.21–1.35 (m, 30H), 13C NMR:
14.7 (CH2CH3), 22.3 (CH3), 22.5 (CH3), 30.2 (CH), 62.7 (CH2CH3), 72.0 (CHP), 85.4
(PCH O), 90.3 (PCO), 161.0 (PC N), 120.2, 122.5, 127.6, 129.3, 147.7, 149.2 (Carom);
31P NMR: 0.5 (αP), −3.4 (βP), 17.6 (γ P); ESI-MS: 700.5 [M+H]+.
REFERENCES
1. For reviews, see: (a) R. Huisgen, In 1,3-Dipolar Cycloaddition Chemistry, A. Padwa, Ed. (Wiley,
New York, 1984), p. 1; (b) A. R. S. Ferwanah and A. M. Awadallah, Molecules, 10, 492 (2005);
(c) K. Ruck-Braun, T. H. E. Freysoldt, and F. Wierschem, Chem. Soc. Rev., 34, 507 (2005);
(d) R. P. Litvinovskaya and V. A. Khripach, Uspekhi Khimii, 70, 464 (2001); (e) J. K. Gallos and
A. E. Koumbis, Curr. Org. Chem., 7, 39 (2003); (f) I. N. N. Namboothiriand and A. Hassner,
Top. Curr. Chem., 216, 1 (2001); (g) R. Huisgen, Angew. Chem. Int. Ed., 2, 565 (1963); (h) T.
M. V. D. P. E. Melo, Curr. Org. Chem., 9, 925 (2005); (i) R. Huisgen, Angew. Chem. Int. Ed. 2,
633 (1963); (j) I. N. N. Namboothiri, N. Rastogi, B. Ganguly, S. M. Mobin, and M. Cojocaru,
Tetrahedron, 60, 1453 (2004); (k) R. Huisgen, Chem. Pharm. Bull., 48, 757 (2000).
2. For representative examples, see: (a) Z. X. Yu, P. Caramella, and K. N. Houk, J. Am. Chem. Soc.,
125, 15420 (2003); (b) E. Coutouli-Argyropoulou, P. Lianis, M. Mitakou, A. Giannoulis, and
J. Nowak, Tetrahedron, 62, 1494 (2006); (c) H. Takikawa, Y. Hachisu, and J. W. Bode, Angew.
Chem. Int. Ed., 45, 3492 (2006); (d) N. M. Fedou, P. J. Parsons, E. M. E. Viseux, and A. J.
Whittle, Org. Lett., 7, 3179 (2005); (e) T. V. Hansen, P. Wu, and V. V. Fokin, J. Org. Chem., 70,
7761 (2005); (f) F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless,
and V. V. Fokin, J. Am. Chem. Soc., 127, 210 (2005); (g) A. Dondoni, P. P. Giovannini, and A.
Massi, Org. Lett., 6, 2929 (2004); (h) Y. Ye, Y. Zheng, G. Y. Xu, and L. Z. Liu, Heteroatom
Chem., 14, 254 (2003); (i) D. Muri, N. Lohse-Fraefel, and E. M. Carreira, Angew. Chem. Int.
Ed., 44, 4036 (2005).
3. (a) A. I. Kotyatkina, V. N. Zhabinsky, and V. A. Khripach, Uspekhi Khimii, 70, 730 (2001);
(b) Z. X. Yu and K. N. Houk, J. Am. Chem. Soc., 125, 13825 (2003); (c) D. Giguere, R. Patnam,