3404
S. Tasler et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3399–3404
membrane preparations of HEK-293 cells overexpressing the human b3-AR
(Bmax = 550 fmol/mg protein) using 0.5 nM [125I]-cyanopindolol as radioligand.
19. All aryloxypropanolamine derivatives were tested as racemates.
20. Membrane preparations (CHO-K1 cell line) expressing human b1-, b2- or b3-
ARs (Bmax = 3.78, 1.68 and 47.2 pmol/mg protein, respectively), were purchased
from Euroscreen (now Perkin Elmer). Binding assays were performed according
to the manufacturer’s instructions. The radioligand for all three receptor
subtypes was [125I]-cyanopindolol (125I-CYP) (Amersham) (final concentration
of 0.05, 0.05 and 1.5 nM, respectively). Ki values were calculated using the
Cheng–Prusoff equation on IC50 determinations, which were based on
concentration curves using eight concentrations (half-logarithmic) in
duplicate.
21. Functional response of cells (agonistic or antagonistic) to the test compounds
was tested by measurement of cyclic AMP formation by HTRFÒ (Homogeneous
Time-Resolved Fluorescence) technology (Cisbio International) using a stable
cell line CHO-K1 expressing the human recombinant b3-AR (Euroscreen, now
Perkin Elmer) according to the manufacturer’s instructions. EC50 (agonists) and
IC50 values (antagonists) were determined by dose–response curves based on
eight concentrations (logarithmic) determined in quadruplicate in a 96 half-
original screening hits renders this approach highly valuable. Start-
ing from the naphthalimide-substituted aryloxypropanolamine
scaffold of the original hit molecules 4 and 5, all medicinal chem-
istry endeavours resulted in a stronger emphasis of affinity for
hb2-AR and optimization of selectivity towards the latter AR sub-
type. Such efforts led to the identification of the benzoylpiperidine
derivative 46, displaying excellent affinity for hb2-AR in the picom-
olar range and an antagonistic activity at hb2-AR. Its favourable pi-
lot profile of physicochemical and pharmacokinetic parameters
suggests further optimization towards application of a hb2-AR
antagonist in for example, wound healing.
Acknowledgments
The authors want to thank Oliver Müller and Marcel Kirschstein
for synthetic support.
well plate in a final volume of 100
ll. The antagonistic effect was determined
by preincubation with test compound for 10 min followed by agonist
a
stimulation (0.05 nM isoproterenol) for 30 min.
Functional data on hb1-AR and hb2-AR were determined at Euroscreen (both,
in an agonist and an antagonist assay). EC50 and IC50 values, respectively, were
determined by dose response curves based on eight concentrations
(logarithmic) determined in duplicate.
References and notes
1. (a) Arch, J. R. S.; Ainsworth, A. T.; Cawthorne, M. A.; Piercy, V.; Sennitt, M. V.;
Thody, V. E.; Wilson, C.; Wilson, S. Nature 1984, 309, 163; (b) Emorine, L. J.;
Marullo, S.; Briend-Sutren, M. M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.;
Strosberg, A. D. Science 1989, 245, 1118.
2. Hieble, J. P. Curr. Top. Med. Chem. 2007, 7, 207.
3. Dow, R. L. Exp. Opin. Invest. Drugs 1997, 6, 1811.
22. Tasler, S.; Baumgartner, R.; Ammendola, A.; Wieber, T.; Schachtner, J.; Blisse,
M.; Rath, S.; Michel, S.; Lang, M.; Zaja, M.; Quotschalla, U.; Ney, P. Bioorg. Med.
Chem. Lett., in preparation.
23. In analogy to e.g.: (a) Wagner, S.; Kopka, K.; Law, M. P.; Riemann, B.; Pike, V.
W.; Schober, O.; Schäfers, M. Bioorg. Med. Chem. 2004, 12, 4117; (b) Elzein, E.;
Shenk, K.; Ibrahim, P.; Marquart, T.; Kerwar, S.; Meyer, S.; Ahmed, H.; Zeng, D.;
Chu, N.; Soohoo, D.; Wong, S.; Leung, K.; Zablocki, J. Bioorg. Med. Chem. Lett.
2004, 14, 973.
24. In analogy to, e.g.: (a) Yang, W.; Wang, Y.; Roberge, J. Y.; Ma, Z.; Liu, Y.;
Lawrence, R. M.; Rotella, D. P.; Seethala, R.; Feyen, J. H. M.; Dickson, J. K., Jr.
Bioorg. Med. Chem. Lett. 2005, 15, 1225; (b) Howe, R.; Rao, B. S.; Holloway, B. R.;
Stribling, D. J. Med. Chem. 1992, 35, 1751.
25. (a) Hein, L. Pharm. Unserer Zeit 2004, 33, 434; (b) Griffin, P. P.; Schubert-
Zsilavecz, M.; Stark, H. Pharm. Unserer Zeit 2004, 33, 442.
4. Weber, A. E. Ann. Rep. Med. Chem. 1998, 33, 193.
5. Baker, J. G. Br. J. Pharmacol. 2005, 144, 317.
6. Kolb, P.; Rosenbaum, D. M.; Irwin, J. J.; Fung, J. J.; Kobilka, B. K.; Shoichet, B. K.
Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 6843.
7. Rouget, C.; Breuiller-Fouche, M.; Mercier, F. J.; Leroy, M. J.; Loustalot, C.; Naline,
E.; Frydman, R.; Croci, T.; Morcillo, E. J.; Advenier, C.; Bardou, M. Br. J.
Pharmacol. 2004, 141, 831.
8. (a) Inoue, Y.; Yoshizato, T.; Kawarabayashi, T. J. Obstet. Gynaecol. Res. 2009, 35,
405; (b) Doggrell, S. A. Expert Opin. Pharmacother. 2004, 5, 1917.
9. Sawa, M.; Harada, H. Curr. Med. Chem. 2006, 13, 25.
10. Ursino, M. G.; Vasina, V.; Raschi, E.; Crema, F.; De Ponti, F. Pharmacol. Res. 2009,
59, 221.
26. For a few examples, cf. e.g.: Brana, M. F.; Gradillas, A.; Gomez, A.; Acero, N.;
Llinares, F.; Munoz-Mingarro, D.; Abradelo, C.; Rey-Stolle, F.; Yuste, M.;
Campos, J.; Gallo, M. A.; Espinosa, A. J. Med. Chem. 2004, 47, 2236.
27. For a CoMSIA (Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37,
12. (a) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B.
A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano,
M. Science 2000, 289, 739; (b) Okada, T.; Sugihara, M.; Bondar, A.-N.; Elstner,
M.; Entel, P.; Buss, V. J. Mol. Biol. 2004, 342, 571.
4130),
two
enantiomeric
data
sets
of
41
3D-structures
of
aryloxypropanolamine compounds with affinity for hb3-AR were aligned on
a template thienopyrimidine derivative22 using 4SC’s proprietary software
4SCanÒ 17
3D-QSAR models using the five CoMSIA descriptors (steric,
.
13. (a) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F.
S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C.
Science 2007, 318, 1258; (b) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.;
Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Yao, X.-J.; Weis, W. I.;
Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266; (c) Rasmussen, S. G. F.;
Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.;
Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F.
X.; Weis, W. I.; Kobilka, B. K. Nature 2007, 450, 383.
14. Warne, T.; Serrano-Vega, M. J.; Baker, J. G.; Moukhametzianov, R.; Edwards, P.
C.; Henderson, R.; Leslie, A. G. W.; Tate, C. G.; Schertler, G. F. X. Nature 2008,
454, 486.
15. (a) Tanaka, N.; Tamai, T.; Mukaiyama, H.; Hirabayashi, A.; Muranaka, H.;
Ishikawa, T.; Kobayashi, J.; Akahane, S.; Akahane, M. J. Med. Chem. 2003, 46,
105; (b) Yanagisawa, T.; Sato, T.; Yamada, H.; Sukegawa, J.; Nunoki, K. Tohoku J.
Exp. Med. 2000, 192, 181; (c) Hu, B.; Jennings, L. L. Prog. Med. Chem. 2003, 41,
167.
electrostatic, hydrophobic, H-donor, H-acceptor) were calculated with SYBYL
(version 7.0; Tripos Associates: St. Louis, MO, USA, 2005; http://
propanolamine moiety resulted in correlation between predicted and
measured pKi values (q2 = 0.55, cross-validated RMSE = 0.55, 6 components),
predicting by itself the biologically active stereoisomer, and was used for
further predictions.
28. (a) Pullar, C. E.; Rizzo, A.; Isseroff, R. R. J. Biol. Chem. 2006, 281, 21225; (b) Pullar,
C. E.; Grahn, J. C.; Liu, W.; Isseroff, R. R. FASEB J. 2006, 20, 76; (c) Sivamani, R. K.;
Pullar, C. E.; Manabat-Hidalgo, C. G.; Rocke, D. M.; Carlsen, R. C.; Greenhalgh, D.
G.; Isseroff, R. R. PLoS Med. 2009, 6, 105.
29. NMR data (ppm) for compound 46: 1H NMR (300 MHz, DMSO-d6): d = 1.60 (m,
2H), 1.74 (m, 2H), 2.24 (m, 2H), 2.54 (dd, J = 12.5, 5.7 Hz, 1H), 2.67 (dd, J = 12.5,
4.6 Hz, 1H), 3.00 (mC, 2H), 3.38 (mC, 1H), 4.17 (mC, 3H), 4.92 (d, J = 2.6 Hz, 1H,
OH), 6.69 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.14 (dd, J = 7.8, 6.9 Hz, 1H),
7.29 (t, J = 8.0 Hz, 1H), 7.33 (dd, J = 8.0, 6.9 Hz, 1H), 7.34 (t, J = 8.9 Hz, 2H), 7.44
(d, J = 8.0 Hz, 1H), 8.05 (dd, J = 8.9, 5.6 Hz, 2H), 8.25 (d, J = 7.8 Hz, 1H), 11.20 (s,
1H, NH); 13C NMR (75.5 MHz, DMSO-d6): d = 28.45, 42.56, 53.29, 61.51, 66.83,
70.79, 100.4, 103.7, 110.3, 111.6 (Cq), 115.7 (d, 2JCF = 21.9 Hz), 118.4, 121.7 (Cq),
16. Zheng, W.; Nikulin, V. I.; Konkar, A. A.; Vansal, S. S.; Shams, G.; Feller, D. R.;
Miller, D. D. J. Med. Chem. 1999, 42, 2287.
17. Seifert, M. H. J.; Wolf, K.; Vitt, D. Biosilico 2003, 1, 143.
18. Initial screening was performed at MDS, Taiwan, in a radioligand receptor
3
4
122.4, 124.4, 126.4, 131.1 (d, JCF = 9.4 Hz), 132.3 (d, JCF = 3.0 Hz, Cq), 138.9
1
binding assay at
a compound concentration of 10 lM (in duplicate). For
(Cq), 141.1 (Cq), 155.0 (Cq), 164.9 (d, JCF = 252 Hz, Cq), 201.1 (C@O).
potential hits (radioligand replacement >20%), a semi-quantitative IC50 was
determined (six concentrations in duplicate). The assay was based on
30. de Graaf, C.; Rognan, D. J. Med. Chem. 2008, 51, 4978.