K. W. Lam et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3755–3759
3759
cally through the binding energy related to interactions between
the inhibitor and the amino acid residues in the active site.18 In
our study, a good correlation between their IC50 of compounds
1–5 and AUTODOCK binding free energy was exhibited.
In conclusion, the present data showed promising initial results
in the rational design of anti-tyrosinase inhibitor. The results sug-
gested the capability of the thione group to chelate the dicopper
nucleus of the enzyme and the substitution pattern of cycloamine
moiety are the main contributors to the activity, indicate the sig-
nificance of the hydrophobic interaction surrounding the active
site. The information derived from the docking study of compound
5 provides a good starting platform for further structural modifica-
tions and synthesis of potent tyrosinase inhibitor.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Chen, Q. X.; Liu, X. D.; Huang, H. Biochemistry (Mosc) 2003, 68, 644.
2. Shiino, M.; Watanabe, Y.; Umezawa, K. Bioorg. Med. Chem. 2001, 9, 1233.
3. Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Phytochemistry 2004, 65, 1389.
4. Saruno, R.; Kato, F.; Ikeno, T. Agric. Biol. Chem. 1979, 43, 1337.
5. Funayama, M.; Arakawa, H.; Yamamoto, R.; Nishino, T.; Shin, T.; Murao, S.
Biosci. Biotechnol. Biochem. 1995, 59, 143.
6. Nihei, K.; Nihei, A.; Kubo, I. Bioorg. Med. Chem. Lett. 2003, 13, 3993.
7. Khan, M. T. H.; Choudhary, M. I.; Khan, K. M.; Rani, M.; Attaur, R. Bioorg. Med.
Chem. 2005, 13, 3385.
Figure 3. The 2D representation docking result of compound 5 with the residues in
the active site of tyrosinase (PDB code 1wx2) showed by LIGPLOT.17,21
8. El-Emam, A. A.; Al-Deeb, O. A.; Al-Omar, M.; Lehmann, J. Bioorg. Med. Chem.
2004, 12, 5107.
9. Holla, B. S.; Poojary, K. N.; Rao, B. S.; Shivananda, M. K. Eur. J. Med. Chem. 2002,
37, 511.
10. Al-Soud, Y. A.; Al-Masoudi, N. A.; Ferwanah Ael, R. Bioorg. Med. Chem. 2003, 11,
1701.
11. Aboraia, A. S.; Abdel-Rahman, H. M.; Mahfouz, N. M.; El-Gendy, M. A. Bioorg.
Med. Chem. 2006, 14, 1236.
12. Narayana, B.; Ashalatha, B. V.; Vijaya Raj, K. K.; Fernandes, J.; Sarojini, B. K.
Bioorg. Med. Chem. 2005, 13, 4638.
13. Santagati, M.; Modica, M.; Santagati, A.; Russo, F.; Caruso, A.; Cutuli, V.; Di
Pietro, E.; Amico-Roxas, M. Pharmazie 1994, 49, 880.
14. Mathew, V.; Keshavayya, J.; Vaidya, V. P. Eur. J. Med. Chem. 2006, 41, 1048.
15. Almajan, G. L.; Innocenti, A.; Puccetti, L.; Manole, G.; Barbuceanu, S.; Saramet,
I.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2005, 15, 2347.
16. Hearing, V. J., Jr. Methods Enzymol. 1987, 142, 154.
17. Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. J. Biol. Chem.
2006, 281, 8981.
18. Khatib, S.; Nerya, O.; Musa, R.; Tamir, S.; Peter, T.; Vaya, J. J. Med. Chem. 2007,
50, 2676.
19. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.;
Olson, A. J. J. Comput. Chem. 1998, 19, 1639.
20. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.;
Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.
21. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Protein Eng. 1995, 8, 127.
22. Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. J. Agric. Food
Chem. 2006, 54, 935.
23. Xie, L. P.; Chen, Q. X.; Huang, H.; Wang, H. Z.; Zhang, R. Q. Biochemistry (Mosc)
2003, 68, 487.
24. Klabunde, T.; Eicken, C.; Sacchettini, J. C.; Krebs, B. Nat. Struct. Biol. 1998, 5,
1084.
role of the secondary amine in hydrogen bonding interaction and
hydrophobic contact was further explored by substituting different
cycloamine derivatives including piperazine, piperidine, pyrroli-
dine, morpholine and N-methylpiperazine. From the docking re-
sults, the piperazine moiety was found to well occupy the pocket
consisting His 54, Trp 184, His 190 and Asn 191 residues, while
the piperazine side chain further formed a 2.9 Å hydrogen bonding
with the carboxylate side chain of Glu 182 (see Fig. 3). Replacing
the piperidine moiety with pyrrolidine, slightly reduced the inhib-
itory activity which could explain the importance of the hydropho-
bic interaction surrounding the active site. Chelation between the
sulfur atom and the metal nucleus could act as a bridge to link
the naphthyl and aminyl moieties with the hydrophobic pockets
surrounding the active site. In Figure 3, the naphthalene ring was
within close contact range with the adjacent residues of Val 195
and Asn 191. Compounds 6–16 did not show inhibitory effects
on the tyrosinase activity. Structurally these compounds lacked
the thione functionality and the shielding effects surrounding the
thioether group might be the reason for its inactivity. Based on
the bioactivity results and this structural observation, the presence
of thione is necessary as metal chelator (see Figs. 2 and 3). Previous
studies of tyrosinase inhibitors by Khatib et al. showed that the
performance of tyrosinase inhibitors could be predicted theoreti-