Inorganic Chemistry
Article
4. CONCLUSIONS
In conclusion, a hexacarboxylate ligand containing azo group
has been successfully used for the construction of MOFs, 1 and
2, showing dual-functionalities and novel topologies. Micro-
porous MOF 1 exhibits a hydrogen uptake capacity of 1.66 wt
% at 77 K and 1 bar and a high CO2 uptake of 140.0 cm3 g−1 at
273 K. The utilization of UMCs and N-containing moieties
affords enhanced Qst and uptakes because of their special
interactions with gas molecules. The high CO2 affinity over
CH4 and N2, particularly at low pressure certainly renders 1 a
prospective material for low CO2 concentration purification.
These highly desirable features in the context of the
multicomponent gas adsorption will be needed to develop
MOFs for industrial applications.
ASSOCIATED CONTENT
■
S
* Supporting Information
Figure 3. Sorption isotherms for CO2, CH4, and N2 at 273 and 298 K.
(Adsorption and desorption branches are shown with closed and open
symbols, respectively.)
Additional single crystal X-ray analysis figures, powder X-ray
diffraction data, thermogravimetic measurements, gas sorption
data, and analyzing details. This material is available free of
binding sites for CO2 that facilitate the dipole−quadrupole
interactions. The Qst for CO2 was calculated to be 27.4 kJ mol−1
by fitting the 273 and 298 K isotherms to the virial equation,
indicating high affinity toward CO2 at low loading (Supporting
Information Figure S10 and Table S1). For comparison, the
CH4 and N2 uptakes for 1 at 1 atm were found to be 19.3 and
11.6 cm3 g−1 at 273 K, 10.4 and 4.8 cm3 g−1 at 298 K,
respectively. To predict the CO2 separation performance of 1 at
298 K, ideal adsorbed solution theory (IAST)19 calculations
were used for binary gas adsorption selectivity under practically
relevant conditions (Figure 4). In particular, 1 shows a high
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the “973 program” (2012CB821702), the MOE
(NCET-13-0305, IRT-13R30 and IRT13022), and 111 Project
(B12015) for financial support.
REFERENCES
■
(1) (a) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629−
1658. (b) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem., Int. Ed.
2004, 43, 2334−2375. (c) Batten, S. R.; Neville, S. M.; Turner, D. R.
Coordination Polymers: Design, Analysis and Application; Royal Society
of Chemistry: Cambridge, U.K., 2009. (d) Metal−Organic Frameworks:
Design and Application; MacGillivray, L. R., Ed.; Wiley & Sons, Inc.:
Hoboken, NJ, 2010.
(2) (a) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong,
H.-K.; Balbuena, P. B.; Zhou, H.-C. Coord. Chem. Rev. 2011, 255,
1791−1823. (b) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W.
Chem. Rev. 2012, 112, 782−835. (c) He, Y.; Zhou, W.; Qian, G.; Chen,
B. Chem. Soc. Rev. 2014, 43, 5657−5678.
(3) (a) Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869−
932. (b) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.;
Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012,
112, 724−781.
(4) (a) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van
Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105−1125. (b) Cui,
Y.; Chen, B.; Qian, G. Coord. Chem. Rev. 2014, 273, 76−86.
(5) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.;
Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450−1459.
(6) (a) Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.;
Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.;
Eddaoudi, M.; Zaworotko, M. J. Nature 2013, 495, 80−84. (b) Zhang,
Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. Chem. Commun. 2013, 49, 653−
661.
Figure 4. Calculated selectivity of CO2/CH4 (50:50) and CO2/N2
(10:90) at 298 K, respectively.
CO2/N2 selectivity of 29.1 in a 10:90 molar ratio of CO2 and
N2 mixture at 1 bar. The calculated CO2/CH4 selectivity is 10.5
at 1 bar from equimolar CO2 and CH4 mixture. The selectivity
of 1 for CO2 over CH4 and N2 under these conditions is
comparable to the majority of MOFs reported to date.3a,6b
Indeed, many MOFs with high selectivity have lower CO2
uptake than 1.3 Therefore, this material would be a promising
candidate for natural gas purification and postcombustion CO2
capture applications.
(7) Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Chem. Eng. J.
2011, 171, 760−774.
(8) Desiraju, G. R. Angew. Chem., Int. Ed. 2007, 46, 8342−8356.
D
Inorg. Chem. XXXX, XXX, XXX−XXX