Angewandte
Chemie
cationic AuI catalyst, was carried out with 10 mol% of AuCl3/
AgSbF6,[17] 1,2-alkyl migration occurred to give bicyclo-
[4.3.0]nonane derivative 11 in 70% yield (Scheme 5) .[18] It
is thought that, in case of the highly electron-deficient cationic
3519; Angew. Chem. Int. Ed. 2007, 46, 3410 – 3449; b) C.
Bruneau, Angew. Chem. 2005, 117, 2380 – 2386; Angew. Chem.
Int. Ed. 2005, 44, 2328 – 2334; c) E. Jimꢂnez-Nfflæez, A. M.
Echavarren, Chem. Commun. 2007, 333 – 346; d) V. Michelet,
P. Y. Toullec, J.-P. GenÞt, Angew. Chem. 2008, 120, 4338 – 4386;
Angew. Chem. Int. Ed. 2008, 47, 4268 – 4315; e) A. M. Echavar-
ren, C. Nevado, Chem. Soc. Rev. 2004, 33, 431 – 436; f) J. Marco-
Contelles, E. Soriano, Chem. Eur. J. 2007, 13, 1350 – 1357; g) F.
Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2004, 104, 3079 –
3159; h) G. Zeni, R. C. Larock, Chem. Rev. 2004, 104, 2285 –
2309; i) M. lvarez-Corral, M. Muæoz-Dorado, I Rodríguez-
García, Chem. Rev. 2008, 108, 3174 – 3198; j) N. T. Patil, Y.
Yamamoto, Chem. Rev. 2008, 108, 3395 – 3442.
[3] For recent reviews of 1,2-alkyl migration of carbene intermedi-
ates, see: B. Crone, S. F. Kirsch, Chem. Eur. J. 2008, 14, 3514 –
3522.
[4] See the Supporting Information for preparative methods.
[5] The reaction of 3a with [W(CO)5(thf)] proceeded to give the
products as a mixture of diastereoisomers (4a 22% + 23%). The
reaction of 3a with [ReCl(CO)5] proceeded to give the products
as a mixture of silyl enol ether 4a and its hydrolyzed product
(9% + 69%).
Scheme 5. 1,2-Hydrogen shift or 1,2-alkyl migration of the carbene
intermediate. E=CO2Me. Conditions: A) 10 mol% [AuClPPh3]/AgSbF6,
4 ꢀ M.S., DCE, 808C, 0.25 h; B) 10 mol% AuCl3/AgSbF6, 4 ꢀ M.S.,
DCE, RT, 0.3 h.
[6] For recent reviews on gold-mediated homogeneous catalysis,
see: a) A. Fꢁrstner, Chem. Soc. Rev. 2009, 38, 3208 – 3221; b) P.
Belmont, E. Parker, Eur. J. Org. Chem. 2009, 6075 – 6089; c) Z.
Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239 – 3265; d) A.
Arcadi, Chem. Rev. 2008, 108, 3266 – 3325; e) E. Jimꢂnez-Nfflæez,
A. M. Echavarren, Chem. Rev. 2008, 108, 3326 – 3350; f) D. J.
Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351 –
3378; g) J. Muzart, Tetrahedron 2008, 64, 5815 – 5849; h) R.
Skouta, C.-J. Li, Tetrahedron 2008, 64, 4917 – 4938; i) H. C. Shen,
Tetrahedron 2008, 64, 7847 – 7870; j) A. S. K. Hashmi, Chem.
Rev. 2007, 107, 3180 – 3211; k) D. J. Gorin, F. D. Toste, Nature
2007, 446, 395 – 403; l) L. Zhang, J. Sun, S. A. Kozmin, Adv.
Synth. Catal. 2006, 348, 2271 – 2296; m) A. S. K. Hashmi, G. J.
Hutchings, Angew. Chem. 2006, 118, 8064 – 8105; Angew. Chem.
Int. Ed. 2006, 45, 7896 – 7936; n) R. A. Widenhoefer, X. Han,
Eur. J. Org. Chem. 2006, 4555 – 4563.
AuIII carbene complex intermediate, 1,2-alkyl migration is
accelerated by the highly electrophilic character of the
carbene carbon atom, whereas in the moderately electron-
deficient AuI carbene complex, 1,2-hydrogen shift became the
favorable reaction pathway.[19] Thus, two types of product
could be obtained selectively by the appropriate choice of the
AuI or AuIII catalyst.
In summary, we have developed gold-catalyzed geminal
carbo-functionalization of 3-siloxy-1,3-dien-8-ynes 3 to give
bicyclo[4.3.0]nonanes 4 stereoselectively through a ring-
expansion reaction of the bicyclic carbene complex inter-
mediates. The reaction gave synthetically useful bicyclo-
[4.3.0]nonane derivatives 4 whose configuration is different
from that of the thermal Diels–Alder adduct.
[7] AgSbF6 alone failed to catalyze the reaction of 3a. Starting
material 3a was mostly recovered.
[8] For examples of transition-metal-catalyzed [4+2] cycloaddition
of 1,3-dien-8-yne derivatives, see: a) P. A. Wender, T. E. Smith, J.
Org. Chem. 1995, 60, 2962 – 2963; b) R. Shintani, Y. Sannohe, T.
Tsuji, T. Hayashi, Angew. Chem. 2007, 119, 7415 – 7418; Angew.
Chem. Int. Ed. 2007, 46, 7277 – 7280; c) D. Motoda, H. Kinoshita,
H. Shinokubo, K. Oshima, Angew. Chem. 2004, 116, 1896 – 1898;
Angew. Chem. Int. Ed. 2004, 43, 1860 – 1862; d) B. Wang, P. Cao,
X. Zhang, Tetrahedron Lett. 2000, 41, 8041 – 8044; e) S. R.
Gilbertson, G. S. Hoge, D. G. Genov, J. Org. Chem. 1998, 63,
10077 – 10080; f) K. Kumar, R. S. Jolly, Tetrahedron Lett. 1998,
39, 3047 – 3048; g) A. Fꢁrstner, K. Majima, R. Martín, H.
Krause, E. Kattnig, R. Goddard, C. W. Lehmann, J. Am.
Chem. Soc. 2008, 130, 1992 – 2004; h) A. Fꢁrstner, C. C. Stimson,
Angew. Chem. 2007, 119, 9001 – 9005; Angew. Chem. Int. Ed.
2007, 46, 8845 – 8849.
Experimental Section
General procedure: 3-Siloxy-1,3-diene-8-yne (0.1 mmol) in degassed
dichloroethane (1 mL) was added to a mixture of [AuClPPh3]
(0.01 mmol), AgSbF6 (0.01 mmol), and activated 4 ꢀ molecular
sieves (100 mg). After the mixture was stirred for 1 h at room
temperature, the reaction mixture was filtered through a short pad of
silica gel, and the filtrate was concentrated under reduced pressure.
The residue was purified by preparative thin layer chromatography
(PTLC) to give the bicyclic compound.
Received: February 21, 2010
Published online: May 5, 2010
[9] For an example of Diels–Alder reaction of 1,3-dien-8-yne
derivatives, see: T. Stellfeld, U. Bhatt, M. Kalesse, Org. Lett.
2004, 6, 3889 – 3892.
[10] The relative configuration of 4a and 5 was determined by
observation of NOE spectra. For details, see the Supporting
Information.
[11] a) K. Maeyama, N. Iwasawa, J. Am. Chem. Soc. 1998, 120, 1928 –
1929; b) N. Iwasawa, K. Maeyama, H. Kusama, Org. Lett. 2001,
3, 3871 – 3873; c) H. Kusama, H. Yamabe, N. Iwasawa, Org. Lett.
2002, 4, 2569 – 2571; d) N. Iwasawa, T. Miura, K. Kiyota, H.
Kusama, K. Lee, P. H. Lee, Org. Lett. 2002, 4, 4463 – 4466; for
important example, see also: e) S. T. Staben, J. J. Kennedy-
Keywords: alkynes · cycloaddition · gold ·
homogeneous catalysis · ring expansion
.
[1] a) H. Kusama, H. Yamabe, Y. Onizawa, T. Hoshino, N. Iwasawa,
Angew. Chem. 2005, 117, 472 – 474; Angew. Chem. Int. Ed. 2005,
44, 468 – 470; b) Y. Onizawa, H. Kusama, N. Iwasawa, J. Am.
Chem. Soc. 2008, 130, 802 – 803; c) H. Kusama, Y. Onizawa, N.
Iwasawa, J. Am. Chem. Soc. 2006, 128, 16500 – 16501.
[2] For recent reviews of electrophilic activation of alkynes, see:
a) A. Fꢁrstner, P. W. Davies, Angew. Chem. 2007, 119, 3478 –
Angew. Chem. Int. Ed. 2010, 49, 4269 –4272
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4271