O. Hamed et al. / Tetrahedron Letters 51 (2010) 3514–3517
3517
Carbomethylation of (R)-(Z)-13 afforded three products that
References and notes
were isolated and purified by flash chromatography. NMR analysis
showed the compounds to be 4-methoxy-4-phenylbutan-2-one, 4-
acetoxy-4-phenyl-butan-2-one, and the desired (2R,3S)-dimethyl
2-((R)-1-hydroxyethyl)-3-phenylsuccinate (R,R,S)-14, in 41% yield.
The ee of (R,R,S)-14 was determined by 1H NMR in the presence of
the lanthanide shift reagent Eu(hcf)3 to be 80.7%, representing a dia-
stereoselectivity of 93%. Dicarbomethoxylation of (R)-(E)-13 also
produced three products, which were isolated and purified by flash
chromatography. 1H NMR analysis showed the compounds to be 4-
methoxy-4-phenylbutan-2-one, 4-acetoxy-4-phenyl-butan-2-one,
and the (2R,3R)-dimethyl 2-((R)-1-hydroxyethyl)-3-phenylsuccinate
(R,R,R)-14 in 17%, 27% and 56% yield, respectively. The diastereo-
meric ratio for (R,R,R)-14 was determined by 1H NMR in the pres-
ence of the lanthanide shift reagent Eu(hcf)3 to be 64.7%, thus the
dicarbomethoxylation proceeded in 86% diastereoselectivity.
1. Stork, G.; Kahne, D. E. J. Am. Chem. Soc. 1983, 105, 1072–1073.
2. Thompson, H. W.; Shah, N. V. J. Org. Chem. 1983, 48, 1325–1328.
3. Brown, J. M.; Naik, R. G. J. Chem. Soc., Chem. Commun. 1982, 348–350.
4. Hamed, O.; Henry, P. M. Organometallics 1997, 16, 4903–4909.
5. Stork, G.; Kahn, M. Tetrahedron Lett. 1983, 24, 3951–3954.
6. Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett. 1983, 24, 3943–3946.
7. Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1975, 2623–
2626.
8. Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1979, 4841–
4844.
9. Smadja, W.; Czernecki, S.; Ville, G.; Georgoulis, C. Organometallics 1987, 6, 166–
169.
10. Francis, J. W.; Henry, P. M. Organometallics 1991, 10, 3498–3503.
11. Francis, J. W.; Henry, P. M. Organometallics 1992, 11, 2832–2836.
12. Hamed, O.; Thompson, C.; Henry, P. M. J. Org. Chem. 1997, 62, 7082–7083.
13. Uenishi, J.; Vikhe, Y. S.; Kawai, N. Chem. Asian J. 2008, 3, 473–484.
14. Stille, J. K.; Divakaruni, R. J. Org. Chem. 1979, 44, 3474–3482.
15. Aratani, T.; Tahara, K.; Takeuchi, S.; Ukaji, Y.; Inomata, K. Chem. Lett. 2007, 36,
1328–1329.
We also attempted to prepare (R)-1-phenyl-3-butyn-1-ol and
(R)-1,1-dipheny-4-pentyne-2-ol utilizing (S,S)-RuCl[N-(tosyl)-1,2-
diphenylethylenediamine)(p-cymene)] from the corresponding
propargyl ketones 15 and 16, but only clean 1,4-reduction occurred
as shown in Scheme 3. These results indicate that 1,2-reduction of
propargyl ketone to chiral allylic alcohol using this chiral ruthe-
nium reagent may be limited to propargyl ketones with a non-
16. Liang, B.; Liu, J.; Gao, Y.; Wongkhan, K.; Shu, D.; Lan, Y.; Li, A.; Batsanov, A. S.;
Howard, J. A. H.; Marder, T. B.; Chen, J.; Yang, Z. Organometallics 2007, 26,
4756–4762.
17. Takeuchi, S.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2001, 74, 955–958.
18. Sperrle, M.; Consiglio, G. Inorg. Chim. Acta 2000, 300–302, 264–272.
19. James, D. E.; Stille, J. K. J. Am. Chem. Soc. 1976, 98, 1810–1823.
20. Choi, D.; Lee, K.; Chung, Y.; Joo, J.; Kim, Y.; Oh, C.; Lee, Y.; Ham, W. Arch. Pharm.
Res. 2005, 28, 151–158.
21. Bianchini, C.; Meli, A.; Oberhauser, W.; Parisel, S.; Gusev, O. V.; Kal’sin, A. M.;
Vologdin, N. V.; Dolgushin, F. M. J. Mol. Catal. A: Chem. 2004, 224, 35–49.
22. Dai, M.; Wang, C.; Dong, G.; Xiang, J.; Luo, T.; Liang, B.; Chen, J.; Yang, Z. Eur. J.
Org. Chem. 2003, 4346–4348.
23. Parvulescu, V.; Constantin, C.; Su, B. L. J. Mol. Catal. A: Chem. 2003, 202, 171–
178.
24. Mizutani, T.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2003, 76, 1251–1256.
25. Yokota, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2002, 67, 5005–5008.
26. Bianchini, C.; Lee, H. M.; Mantovani, G.; Meli, A.; Oberhauser, W. New J. Chem.
2002, 26, 387–397.
27. Hayashi, M.; Takezaki, H.; Hashimoto, Y.; Takaoki, K.; Saigo, K. Tetrahedron Lett.
1998, 39, 7529–7532.
bulky group on the
a carbon.
In summary, we have demonstrated the utilization of asymmet-
ric dicarboxymethylation of allylic alcohols for the preparation of
materials containing three contiguous asymmetric centers in good
to excellent (78–98%) diastereoselectivities.
Acknowledgments
28. Nuthakki, B.; Bobbitt, J. M.; Rusling, J. F. Langmuir 2006, 22, 5289–5293.
29. Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc.
1987, 109, 7925–7926.
30. Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551–5553.
31. Hull, K. G.; Visnick, M.; Tautz, W.; Sheffron, A. Tetrahedron 1997, 53, 12405–
12414.
32. Fujioka, H.; Matsuda, S.; Horai, M.; Fujii, E.; Morishita, M.; Nishiguchi, N.; Hata,
K.; Kita, Y. Chem. Eur. J. 2007, 13, 5238–5248.
33. Matsuo, J.; Kozai, T.; Nishikawa, O.; Hattori, Y.; Ishibashi, H. J. Org. Chem. 2008,
73, 6902–6904.
Acknowledgment is made to the Donors of the American Chem-
ical Society Petroleum Research Fund for support of this research
through ACS PFR #48511-AC1. NSF Grant DBI-0216630 is grate-
fully acknowledged for the Varian INOVA-300 NMR obtained
through the NSF Major Instrumentation Program, The authors also
thanks Dr. Kyaw Zaw from the University of Illinois at Chicago
(UIC) for running the NOESY experiment.
34. Fukazawa, T.; Hashimoto, T. Tetrahedron: Asymmetry 1993, 4, 2323–2326.
35. James, D. E.; Hines, L. F.; Stille, J. K. J. Am. Chem. Soc. 1976, 98, 1806–1809.
36. Bogliotti, N.; Dalko, P. I.; Cossy, J. Tetrahedron Lett. 2005, 46, 6915–6918.
37. Lindlar, H.; Dubuis, R. Org. Synth. 1966, 46, 89–92.
38. Grant, B.; Djerassi, C. J. Org. Chem. 1974, 39, 968–970.
39. Ziffer, H.; Bax, A.; Highet, R. J.; Green, B. J. Org. Chem. 1988, 53, 895–896.
40. de Riggi, I.; Virgili, A.; de Moragas, M.; Jaime, C. J. Org. Chem. 1995, 60, 27–31.
Supplementary data
Supplementary data associated with this article can be found, in