pubs.acs.org/joc
metal-catalyzed3-5 and organocatalyzed6,7 methods are
Stereochemical Surprises in the Lewis Acid-Mediated
Allylation of Isatins
available for this, including arylation,3 allylation,4,5 aldol,6
and Friedel-Crafts5,7 reactions.
Our laboratory recently accomplished the enantiospecific
preparation of a fragile R-chiral allylic stannane8 by copper-
catalyzed allylic substitution of an essentially enantiopure
allylic precursor with (Bu3Sn)2Zn9 [(S)-1 f (R)-2, Scheme
‡
,‡
Devendra J. Vyas,‡,† Roland Frohlich, and Martin Oestreich*
€
‡
€
Organisch-Chemisches Institut, Westfalische
Wilhelms-Universita€t Mu€nster, Corrensstrasse 40,
48149 Mu€nster, Germany, and †NRW Graduate School
of Chemistry
1].10 Subsequent BF3 OEt2-promoted allylation of alde-
3
hydes was syn diastereoselective and yielded homoallylic
alcohols with excellent enantiomeric excesses and chirality
transfers [(R)-2 f syn-3, Scheme 1].10 We reasoned that
activated carbonyl compounds such as isatin would also
participate in this highly stereocontrolled allylation. In anticipa-
tion of a rather systematic investigation employing a series of
functionalized isatins, we were surprised to learn that the parent
isatin behaves distinctly different from all substituted isatins
tested.12 In this Note, we share our unexpected observation that
the levels of diastereo- as well as enantioselection in this reagent-
controlled allylation are markedly dependent on any substitu-
tion of the isatin benzene core.
Received July 19, 2010
(3) (a) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45,
3353–3356. (b) Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.;
Minnaard, A. J. Org. Lett. 2006, 8, 2715–2718. (c) Lai, H.; Huang, Z.; Wu, Q.;
Qin, Y. J. Org. Chem. 2009, 74, 283–288. (d)Tomita, D.;Yamatsugu, K.;Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946–6948. For methylation,
see: (e) Funabashi, K.; Jachmann, M.; Kanai, M.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2003, 42, 5489–5492.
(4) (a) Itoh, J.; Han, S. B.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48,
6313–6316. (b) Kitajima, M.; Mori, I.; Arai, K.; Kogure, N.; Takayama, H.
Tetrahedron Lett. 2006, 47, 3199–3202.
(5) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.; Franz,
A. K. Angew. Chem., Int. Ed. 2010, 49, 744–747.
(6) (a) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman,
Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418–7421. (b) Luppi, G.; Monari,
^
M.; Correa, R. J.; Violante, F.; de, A.; Pinto, A. C.; Kaptein, B.; Broxterman,
Q. B.; Garden, S. J.; Tomasini, C. Tetrahedron 2006, 62, 12017–12024.
The BF3 OEt2-mediated allylation of isatin with an R-chiral
3
allylic stannane is diastereo- and enantioselective. Con-
versely, allylation of any substituted isatin employing the
identical protocol is not diastereoselective at all and only
enantioselective for the major diastereomer having syn
relative configuration. The anti isomer is, however, formed
in almost racemic form. Both absolute and relative config-
urations are unambiguously secured by X-ray analysis of
major isomers, and the stereochemical assignment of the
other 3-substituted 3-hydroxy oxindoles is based on similar
NMR spectroscopic characteristics. The remarkable obser-
vations are rationalized by an acyclic transition state model.
(c) Malkov, A. V.; Kabeshov, M. A.; Bella, M.; Kysilka, O.; Malyshev,
ꢀꢁ
ꢀ
ꢁ
ꢀ
D. A.; Pluhackova, K.; Kocovsky, P. Org. Lett. 2007, 9, 5473–5476. (d) Chen.,
J.-R.; Liu, X.-P.; Zhu, X.-Y.; Li, L.; Qiao, Y.-F.; Zhang, J.-M.; Xiao, W.-J.
Tetrahedron 2007, 63, 10437–10444. (e) Nakamura, S.; Hara, N.; Nakashima,
H.; Kubo, K.; Shibata, N.; Toru, T. Chem.-Eur. J. 2008, 14, 8079–8081.
^
(f) Angelici, G.; Correa, R. J.; Garden, S. J.; Tomasini, C. Tetrahedron Lett.
2009, 50, 814–817. (g) Xue, F.; Zhang, S.; Liu, L.; Duan, W.; Wang, W.
Chem.-Asian J. 2009, 4, 1664–1667. (h) Itoh, T.; Ishikawa, H.; Hayashi, Y.
Org. Lett. 2009, 11, 3854–3857. (i) Hara, N.; Nakamura, S.; Shibata, N.; Toru,
T. Chem.-Eur. J. 2009, 15, 6790–6793.
(7) (a) Deng, J.; Zhang, S.; Ding, P.; Jiang, H.; Wang, W.; Li, J. Adv.
Synth. Catal. 2010, 352, 833–838. (b) Chauhan, P.; Chimni, S. S. Chem.-Eur.
J. 2010, 16, 7709–7713.
The oxindole ring is an ubiquitous substructure found in
natural and synthetic alkaloids. Structural variation is intro-
duced with substituents either at the benzene core (C-4-C-7
positions) or at the benzylic carbon atom (C-3 position).
Substitution at that saturated carbon atom usually renders
these molecules chiral, and the asymmetric syntheses of
oxindoles with a tertiary or quaternary stereogenic C-3
position is currently garnering significant attention.1,2 One
way of forming chiral oxindoles is addition of nucleophiles to
the electrophilic isatin carbonyl group, resulting in 3-sub-
stituted 3-hydroxy oxindoles.2 Several unique transition
(8) (a) The σ(C-Sn) bond is involved in hyperconjugation, e.g., stabiliz-
ing carbenium ions in the β position (β-tin effect): Davies, A. G. Organotin
Chemistry; Wiley-VCH: Weinheim, Germany, 2004; pp 35-41. (b) For the
relatively high reactivity of allylic stannanes, see: Mayr, H.; Kempf, B.; Ofial,
A. R. Acc. Chem. Res. 2003, 36, 66–77.
(9) Weickgenannt, A.; Oestreich, M. Chem.-Eur. J. 2010, 16, 402–412.
(10) (a) Schmidtmann, E. S.; Oestreich, M. Angew. Chem., Int. Ed. 2009,
48, 4634–4638. (b) We were able to assign the relative (cf. the Supporting
Information of ref 10a) but not the absolute configuration of the syn
homoallylic alcohols obtained from the BF3 OEt2-mediated allylation of
3
aldehydes (no chemical correlation possible and no X-ray analysis available).
For the related thermal allylation, the absolute configuration of anti homo-
allylic alcohols was assigned based on a cyclic transition state model.
(11) Schmidtmann, E. S.; Oestreich, M. Chem. Commun. 2006, 3643–
3645.
(12) Related but unexplained observations were made in organocatalyzed
aldol reactions. In one case, the enantiomeric excess obtained with the parent
isatin (84% ee) was substantially higher than those found for substituted
isatins (e.g., 49% ee for 7-chloro-substitued isatin).6g In another case, the
enantiomeric excess was excellent for 4,6-dibromo-substituted isatin (92%
ee) but only racemic material was formed with isatin itself (2% ee).6i
(1) (a) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003–3025.
(b) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748–
8758. (c) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209–2219.
(2) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381–
1407.
6720 J. Org. Chem. 2010, 75, 6720–6723
Published on Web 09/08/2010
DOI: 10.1021/jo101420e
r
2010 American Chemical Society