C O M M U N I C A T I O N S
to the derived π-allyl complex occurs by an anti displacement of the
leaving group (to give F), as is known to occur for related systems,20
it can be concluded that (S)-E-11 can only be produced by C-C bond
formation syn to palladium after the metal has migrated to the opposite
face of the cinnamyl-derived allyl fragment (G or related); this outcome
is consistent only with an inner-sphere reductive elimination.
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
References
(1) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F.,
Eds.; Wiley-VCH: New York, 2004.
Scheme 4
(2) For cross-coupling of aryl electrophiles with prochiral allylmetal reagents,
see: Sn: (a) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109,
5478. (b) Obora, Y.; Tsuji, Y.; Kobayashi, M.; Kawamura, T. J. Org. Chem.
1995, 60, 4647. Si: (c) Hatanaka, Y.; Ebina, Y.; Hiyama, T. J. Am. Chem.
Soc. 1991, 113, 7075. (d) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron
Lett. 1994, 35, 1279. (e) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron
Lett. 1994, 35, 6511. B: (f) Kalinin, V. N.; Denisov, F. S.; Bubnov, Y. N.
MendeleeV Commun. 1996, 206. (g) Yamamoto, Y.; Takada, S.; Miyaura,
N. Chem. Lett. 2006, 35, 704.
(3) (a) Yamamoto, Y.; Takada, S.; Miyaura, N. Chem. Lett. 2006, 35, 1368.
(b) Yamamoto, Y.; Takada, S.; Miyaura, N.; Iyama, T.; Tachikawa, H.
Organometallics 2009, 28, 152.
(4) Allylstannanes: (a) Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2595.
(b) Godschalx, J.; Stille, J. K. Tetrahedron Lett. 1980, 21, 2599. (c) Keinan,
E.; Peretz, M. J. Org. Chem. 1983, 48, 5302. (d) Trost, B. M.; Pietrusiewicz,
K. M. Tetrahedron Lett. 1985, 26, 4039. (e) Goliaszewski, A.; Schwartz, J.
Tetrahedron 1985, 41, 5779. (f) Keinan, E.; Bosch, E. J. Org. Chem. 1986,
51, 4006. (g) Cuerva, J. M.; Go´mez-Bengoa, E.; Me´ndez, M.; Echavarren, A. M.
J. Org. Chem. 1997, 62, 7540. (h) van Heerden, F. R.; Huyser, J. J.; Williams,
D. B. G.; Holzapfel, C. W. Tetrahedron Lett. 1998, 39, 5281. (i) Nakamura,
H.; Bao, M.; Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 3208. (j)
Me´ndez, M.; Cuerva, J. M.; Go´mez-Bengoa, E.; Ca´rdenas, D. J.; Echa-
varren, A. M. Chem.sEur. J. 2002, 8, 3620. While this work was in
progress, the cross-coupling of allyl boronates and allyl carbonates was
reported: (k) Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem.sEur. J.
2009, 15, 12247.
Substituted allyl boronates are readily prepared by Miyaura boryl-
ation of the corresponding allyl acetates.21 With this strategy, both
2-methyl- and 2-hexyl-substituted allyl boronates were prepared and
employed in the allyl-allyl cross-coupling reaction. With (R)-MeO-
furyl-BIPHEP as the ligand, both compounds underwent smooth cross-
coupling with the cinnamyl alcohol-derived carbonate and provided
products with excellent levels of selectivity (eqs 1 and 2 in Scheme
5). To further probe the practical utility of the allyl-allyl cross-coupling
reaction, the experiment described by eq 3 in Scheme 5 was carried
out. It was found that the catalyst loading could be lowered to 2.5
mol % palladium and that the THF solvent typically employed in the
cross-coupling could be replaced with ethyl acetate. Under these
conditions, the allyl-allyl coupling could be executed on larger scale
and still furnished the product in good enantioselectivity, albeit with
some erosion of efficiency.
(5) Keinan, E.; Kumar, S.; Dangur, V.; Vaya, J. J. Am. Chem. Soc. 1994, 116,
11151.
(6) (a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199. (b)
Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 1793. (c) Tsuji,
J.; Yamada, T.; Minami, I.; Yuhara, M.; Nisar, M.; Shimizu, I. J. Org.
Chem. 1987, 52, 2988. (d) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20,
140. (e) An asymmetric version was developed by Stoltz and Trost. For a review,
see: Mohr, J. T.; Stoltz, B. M. Chem.sAsian J. 2007, 2, 1476.
(7) For a review, see: Braun, M.; Meier, T. Angew. Chem., Int. Ed. 2006, 45, 6952.
(8) (a) Sieber, J. D.; Liu, S.; Morken, J. P. J. Am. Chem. Soc. 2007, 129, 2214.
(b) Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2008, 130, 4978. (c)
Zhang, P.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 12550.
(9) Ca´rdenas, D. J.; Echavarren, A. M. New J. Chem. 2004, 28, 338. For a
related experimentally observable η1-allyl-η1-carboxylate, see: Sherden,
N. H.; Behenna, D. C.; Virgil, S. C.; Stoltz, B. M. Angew. Chem., Int. Ed.
2009, 48, 6840.
Scheme 5
(10) For reviews, see: (a) Birkholz, M. N.; Freixa, Z.; van Leeuwen, P. W. N. M.
Chem. Soc. ReV. 2009, 38, 1099. (b) van Leeuwen, P. W. N. M.; Kamer,
P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. ReV. 2000, 100, 2741.
(11) (a) Ishiyama, T.; Ahiko, T.; Miyaura, N. Tetrahedron Lett. 1996, 37, 6889.
For related observations, see: (b) Sebelius, S.; Wallner, O. A.; Szabo´, K. J.
Org. Lett. 2003, 5, 3065. (c) Sebelius, S.; Olsson, V. J.; Szabo´, K. J. J. Am.
Chem. Soc. 2005, 127, 10478.
(12) Moloy has noted that the Cl-Cl distance diminishes with increasing bite
angle in (diphosphine)PdCl2 complexes. See: Marcone, J. E.; Moloy, K. G.
J. Am. Chem. Soc. 1998, 120, 8527.
(13) In support of this hypothesis, the calculated transition states for 1,1′ and
3,3′ elimination from (H3P)2Pd(η1-allyl)2 exhibit P-Pd-P angles of 104.9
and 96.6°, respectively (see the supporting information for ref 4j).
(14) Broger, E. A.; Foricher, J.; Heiser, B.; Schmid, R. U.S. Patent 5,274,125, 1993.
(15) Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 1995, 127, 11934.
(16) For decarboxylative allylation, recent studies suggest that both outer-sphere
attack of an unstabilized enolate on an η3 π-allyl and an inner-sphere
reductive elimination pathway are plausible. See: (a) Trost, B. M.; Xu, J.;
Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343. (b) Keith, J. A.; Behenna,
D. C.; Mohr, J. T.; Ma, S.; Marinescu, S. C.; Oxgaard, J.; Stoltz, B. M.;
Goddard, W. A., III. J. Am. Chem. Soc. 2007, 129, 11876.
(17) (a) Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103,
1969. (b) Hayashi, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1982,
104, 4963. (c) Hayashi, T.; Kabeta, K.; Yamamoto, T.; Tamao, K.; Kumada, M.
Tetrahedron Lett. 1983, 24, 5661. (d) Wickham, G.; Kitching, W. J. Org.
Chem. 1983, 48, 614. (e) Buckle, M. J. C.; Fleming, I.; Gil, S.; Pang, K. L. C.
Org. Biomol. Chem. 2004, 2, 749, and references cited therein.
(18) (a) Hayashi, T.; Konishi, M.; Kumada, M. J. Chem. Soc., Chem. Commun.
1983, 736. (b) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. Tetrahedron Lett.
1989, 45, 1067. (c) Hiyama, T.; Matsuhashi, H.; Fujita, A.; Tanaka, M.;
Hirabayashi, K.; Shimizu, M.; Mori, A. Organometallics 1996, 15, 5762.
(19) Jolly, P. W. Angew. Chem., Int. Ed. Engl. 1985, 24, 283.
(20) (a) Hayashi, T.; Hagihara, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1983,
105, 7767. (b) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1980, 102,
4730.
In conclusion, a highly regio- and enantioselective allyl-allyl coupling
reaction has been described. The regiochemical outcome of the reaction
and the described isotope-labeling experiments are consistent with a
pathway involving 3,3′ reductive elimination of bis(allyl)Pd complexes.
An important feature of the reaction is that it provides enantiomerically
enriched vicinal π-π systems that are not accessible by the Cope
rearrangement, and this may find use in organic synthesis.
Acknowledgment. Support by the NIGMS (GM-64451) and
the NSF (DBI-0619576, BC Mass Spectrometry Center) is gratefully
acknowledged. P.Z. is grateful for a LaMattina Fellowship. We
thank Frontier Scientific for a generous donation of allylB(pin).
(21) Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. Tetrahedron Lett. 1996, 37, 6889.
JA105161F
9
10688 J. AM. CHEM. SOC. VOL. 132, NO. 31, 2010