ORGANIC
LETTERS
2010
Vol. 12, No. 16
3618-3621
KMnO4-Mediated Oxidation as a
Continuous Flow Process
Jo¨rg Sedelmeier,* Steven V. Ley,* Ian R. Baxendale, and Marcus Baumann*
InnoVatiVe Technology Centre, Department of Chemistry, UniVersity of Cambridge,
Lensfield Road, Cambridge CB2 1EW, U.K.
Received June 11, 2010
ABSTRACT
An efficient and easily scalable transformation of alcohols and aldehydes to carboxylic acids and nitroalkane derivatives to the corresponding
carbonyls and carboxylic acids using permanganate as the oxidant within a continuous flow reactor is reported. Notably, the generation and
downstream processing of MnO2 slurries was not found to cause any blocking of the reactor when ultrasound pulses were applied to the flow
system.
Over the past few years, flow chemistry has been extensively
used by the chemical community as a valuable replacement
or supplement to traditional batch-processing methods. The
associated benefits such as improved mass and heat transfer,
safer and more reproducible performance,1 and the ability
to conduct multistep sequences2 have been demonstrated by
numerous laboratories.3 However, an often mis-stated limita-
tion of continuous flow chemistry is the inability of microre-
actors to cope with reactions that lead to precipitates due to
the potential for reactor clogging. Although this is a concern,
specifically engineered reactors have been constructed to deal
with the problems associated with slurry transport.4 Unfor-
tunately, these solutions are less easily accommodated when
using standard commercial flow equipment. We encountered
such a problem of solid generation when attempting to
conduct permanganate mediated Nef oxidation as a continu-
ous flow process in a Uniqsis FlowSyn reactor.5 We found
that the oxidation of alcohols and aldehydes to carboxylic
acids and the Nef oxidation6 of nitroalkanes to their carbonyl
derivatives proceeded smoothly by treatment with alkaline
(3) (a) Ja¨hnisch, K.; Hessel, V.; Lo¨we, H.; Baerns, M. Angew. Chem.,
Int. Ed. 2004, 43, 406–446. (b) Kirschning, A.; Solodenko, W.; Mennecke,
K. Chem.sEur. J. 2006, 12, 5972–5990. (c) Benito-Lopez, F.; Egberink,
R. J. M.; Reinhoudt, D. N.; Verboom, W. Tetrahedron 2008, 64, 10023–
10040. (d) Ahmed-Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol. Chem.
2007, 5, 733–740. (e) Seeberger, P. H. Nat. Chem. 2009, 1, 258–260. (f)
Bogdan, A.; McQuade, D. T. Beilstein J. Org. Chem. 2009, 5(17). (g)
Brasholz, M.; Johnson, B. A.; Macdonald, J. M.; Polyzos, A.; Tsanaktsidis,
J.; Saubern, S.; Holmes, A. B.; Ryan, J. H. Tetrahedron 2010, DOI: 10.1016/
j.tet.2010.04.092; (h) O’Brien, M.; Baxendale, I. R.; Ley, S V. Org. Lett.
2010, 12, 1596–1598.
(1) (a) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett 2008,
151–163. (b) Jas, G.; Kirschning, A. Chem.sEur. J. 2003, 9, 5708–5723.
(c) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K.
Synlett 2006, (3), 427–430. (d) Baxendale, I. R.; Deeley, J.; Griffiths-Jones,
C. M.; Ley, S. V.; Tranmer, G. K.; Saaby, S. Chem. Commun. 2006, 24,
2566–2568. (e) Baumann, M.; Baxendale, I. R.; Martin, L. J.; Ley, S. V.
Tetrahedron 2009, 65, 6611–6625. (f) Sedelmeier, J.; Baxendale, I. R.; Ley,
S. V. Green Chem. 2009, 11, 683–685. (g) Carter, C. F.; Baxendale, I. R.;
O’Brien, M.; Pavey, J. B. J.; Ley, S. V. Org. Biomol. Chem. 2009, 7, 4594–
4597. (h) Brandt, J. C.; Wirth, T. Beilstein J. Org. Chem. 2009, 5 (30).
(2) (a) Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D.
Angew. Chem., Int. Ed. 2009, 48, 4017–4021. (b) Baxendale, I. R.; Schou,
S. C.; Sedelmeier, J.; Ley, S. V. Chem.sEur. J. 2010, 16, 89–94. (c) Hopkin,
M. D.; Baxendale, I. R.; Ley, S. V. Chem. Commun. 2010, 46, 2450–2452.
(d) Qian, Z.; Baxendale, I. R.; Ley, S. V. Synlett 2010, (4), 505–508. (e)
Venturoni, F.; Nikbin, N.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem.
2010, (8), 1798–1806.
(4) (a) Takagi, M.; Maki, T.; Miyahara, M.; Mae, K. Chem. Eng. J.
2004, 101, 269–276. (b) Horie, T.; Sumino, M.; Tanaka, T.; Matsushita,
Y.; Ichimura, T.; Yoshida, J. Org. Process Res. DeV. 2010, 14, 405–410.
(c) Amador, C.; Gavriilidis, A.; Angeli, P. Chem. Eng. J. 2004, 101, 379–
390. (d) Buisson, B.; Donegan, S.; Wray, D.; Parracho, A.; Gamble, J.;
Caze, P.; Jorda, J.; Guermeur, C. Chim. Oggi 2009, 27, 12–16. (e)
Kockmann, N.; Kastner, J.; Woias, P. Chem. Eng. J. 2008, 135S, 110–116.
(f) Poe, S. L.; Cummings, M. A.; Haaf, M. P.; McQuade, D. T. Angew.
Chem., Int. Ed. 2006, 45, 1544–1548.
(6) Nef, J. U. Justus Liebigs Ann. Chem. 1894, 280, 264.
10.1021/ol101345z 2010 American Chemical Society
Published on Web 07/22/2010