wR2 = 0.2085 (I 4 2s(I)); R1 = 0.1225, wR2 = 0.2336 (all data).
Reflections collected/unique: 20843/7564 (Rint = 0.0692).
1 B. Jaun, Helv. Chim. Acta, 1990, 73, 2209.
2 W.-P. Lu, S. R. Harder and S. W. Ragsdale, Biochemistry, 1990,
265, 3124.
3 M. A. Halcrow and G. Christou, Chem. Rev., 1994, 94, 2421.
´
4 (a) P. Stavropoulos, M. C. Muetterties and R. H. Carrie, J. Am.
Chem. Soc., 1991, 113, 8485; (b) E. Negishi, Acc. Chem. Res., 1982,
15, 340; (c) G. S. Nahor, P. Neta, P. Hambright and
L. R. Robinson, J. Phys. Chem., 1991, 95, 4415.
5 S. W. Ragsdale and M. Kumar, Chem. Rev., 1996, 96, 2515.
6 U. Ermler, W. Grabarse, S. Shima, M. Goubeaud and
R. K. Thauer, Science, 1997, 278, 1457.
7 S. Bhattacharya, B. Saha, A. Dutta and P. Banerjee, Coord. Chem.
Rev., 1998, 170, 47.
8 (a) A. Ghosh, T. Wondimagegn, E. Gonzalez and I. Halvorsen,
J. Inorg. Biochem., 2000, 78, 79; (b) H. Ohtsu and K. Tanaka,
Angew. Chem., Int. Ed., 2004, 43, 6301; (c) E. Kogut,
H. L. Wiencko, L. Zhang, D. E. Cordeau and T. H. Warren,
J. Am. Chem. Soc., 2005, 127, 11248.
Scheme 3 The in situ partially enlarged low resolution mass spectrum
of the reaction mixture of Ni2 and b.
´
9 P. J. Chmielewski and L. Latos-Graz˙ynski, Coord. Chem. Rev.,
2005, 249, 2510.
10 T. Kurzion-Zilbermann, A. Masarwa, E. Maimon, H. Cohena and
D. Meyerstein, Dalton Trans., 2007, 3959.
11 J. D. Harvey and C. J. Ziegler, J. Inorg. Biochem., 2006, 100, 869.
12 (a) D. Shamir, I. Zilbermann, E. Maimon, H. Cohen and
D. Meyerstein, Inorg. Chem. Commun., 2007, 10, 57;
(b) O. Rotthaus, V. Labet, C. Philouze, O. Jarjayes and
F.
Thomas,
Eur.
J.
Inorg.
Chem.,
2008,
4215;
(c) W. G. Dougherty, K. Rangan, M. O’Hagan, G. P. A. Yap
and C. G. Riordan, J. Am. Chem. Soc., 2008, 130, 13510;
(d) J. Conradie, T. Wondimagegn and A. Ghosh, J. Phys. Chem.
B, 2008, 112, 1053.
13 (a) T. Wondimagegn and A. Ghosh, J. Am. Chem. Soc., 2001, 123,
1543; (b) J. Telser, Y.-C. Horng, D. F. Becker, B. M. Hoffman and
S. W. Ragsdale, J. Am. Chem. Soc., 2000, 122, 182;
(c) W. G. Dougherty, K. Rangan, M. O’Hagan, G. P. A. Yap
and C. G. Riordan, J. Am. Chem. Soc., 2008, 130, 13510;
(d) S. W. Ragsdale, Crit. Rev. Biochem. Mol. Biol., 1991, 26, 261;
(e) E. Gonzalez and A. Ghosh, Chem.–Eur. J., 2008, 14, 9981.
14 (a) A. Volbeda and J. C. Fontecilla-Camps, J. Biol. Inorg. Chem.,
2004, 9, 525; (b) G. G. Riordan, J. Biol. Inorg. Chem., 2004, 9, 509;
(c) C. L. Draman, T. I. Dovkov and S. W. Ragsdale, J. Biol. Inorg.
Chem., 2004, 9, 511.
15 (a) P. A. Lindahl, J. Biol. Inorg. Chem., 2004, 9, 516;
(b) G. G. Riordan, J. Biol. Inorg. Chem., 2004, 9, 542;
(c) T. C. Brunold, J. Biol. Inorg. Chem., 2004, 9, 533.
16 A. Sauer, H. Cohen and D. Meyerstein, Inorg. Chem., 1988, 27,
4578.
Fig. 1 The molecular structure of compound 1b. The solvent CH2Cl2
was omitted for clarity. (a) Top view. (b) Side view.
17 R. van Eldik, H. Cohen, A. Meshulam and D. Meyerstein, Inorg.
Chem., 1990, 29, 4156.
18 D. G. Kelley, A. Marchaj, A. Bakac and J. H. Espenson, J. Am.
Chem. Soc., 1991, 113, 7583.
19 J. Seth, V. Palaniappan and D. F. Bocian, Inorg. Chem., 1995, 34,
2201.
21-C-position. We propose that Ni(III)–alkyl NCPs, which
could be detected by HRMS, are the key intermediates in this
transformation. Further intensive efforts relating to synthetic
modeling of Ni(II)–F430 are being made in our laboratory,
and investigations on the synthesis and properties of stable
Ni(III) NCPs, as well as the applications of Ni(III) NCPs in
biomimetic nickel chemistry, will be carried out in the near
future.
20 P. J. Chmielewski and L. Latos-Grazynski, Inorg. Chem., 1997,
´
˙
36, 840.
21 Z.-W. Xiao, B. O. Patrick and D. Dolphin, Inorg. Chem., 2003, 42,
8125.
22 (a) P. J. Chmielewski, L. Latos-Grazynski, K. Rachlewicz and
´
˙
We thank the Chinese Academy of Sciences (Hundreds of
Talents Program) and the National Science Foundation
(20772147) for the financial support. We thank Dr John
Clough of Syngenta Jealott’s Hill International Research
Centre for his suggestions and proofreading.
T. G"owiak, Angew. Chem., 1994, 104, 805 (Angew. Chem., Int. Ed.,
1994, 33, 779); (b) H. Furuta, T. Asano and T. Ogawa, J. Am.
Chem. Soc., 1994, 116, 767.
23 (a) J. D. Harvey and C. J. Ziegler, Coord. Chem. Rev., 2003, 247, 1;
(b) A. Srinivasan and H. Furuta, Acc. Chem. Res., 2005, 38, 10.
24 J. D. Harvey and C. J. Ziegler, J. Inorg. Biochem., 2006, 100, 869.
25 H.-W. Jiang, Q.-Y. Chen, J.-C. Xiao and Y.-C. Gu, Chem.
Commun., 2008, 5435.
26 Z.-W. Xiao, B. O. Patrick and D. Dolphin, Chem. Commun., 2003,
1062.
27 M. W. Renner, K. M. Barkigia, D. Melamed, J. P. Gisselbrecht,
N. Y. Nelson, K. M. Smith and J. Fajer, Res. Chem. Intermed.,
2002, 28, 741.
Notes and references
z Crystal data for 1bꢂCH2Cl2 (CCDC 715233): C47H34Cl2N4O2,
M
=
757.68, monoclinic,
a
=
11.6814(10),
b
=
17.6688(15),
c = 19.2955(17) A, b = 104.487(2)1, V = 3855.9(6) A3, T = 293(2) K,
space group P21/c, Z = 4, m(Mo-Ka) = 0.214 mmꢃ1, R1 = 0.0740,
ꢀc
This journal is The Royal Society of Chemistry 2009
3734 | Chem. Commun., 2009, 3732–3734