Mendeleev Commun., 2021, 31, 123–124
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2021.01.039.
Oꢀ
O
R
Oꢀ
R
i
ꢊ
Ar
Ar
References
O
O
O
1 A. Lacy and R. O’Kennedy, Curr. Pharm. Des., 2004, 10, 3797.
2 F. G. Medina, J. G. Marrero, M. Macías-Alonso, M. C. González,
I. Córdova-Guerrero, A. G. T. García and S. Osegueda-Robles, Nat.
Prod. Rep., 2015, 32, 1472.
3 G. Athanasellis, G. Melagraki, H. Chatzidakis, A. Afantitis, A. Detsi,
O. Igglessi-Markopoulou and J. Markopoulos, Synthesis, 2004, 11,
1775.
ꢀ
ꢁa−ꢂ
ꢃa−ꢄ
a Ar ꢁ Phꢂ Rꢁ ꢀꢂ ꢃꢄꢅ
b Ar ꢁ 2ꢆMeCꢇꢀꢈꢂ Rꢁ ꢀꢂ ꢃ0ꢅ
c Ar ꢁ ꢈꢆMeCꢇꢀꢈꢂ Rꢁ ꢀꢂ ꢃꢉꢅ
e Ar ꢁ ꢈꢆClCꢇꢀꢈꢂ Rꢁ ꢀꢂ ꢃꢈꢅ
f Ar ꢁ ꢋꢆBrCꢇꢀꢈꢂ Rꢁ ꢀꢂ ꢃ2ꢅ
g Ar ꢁ ꢈꢆꢌCꢇꢀꢈꢂ Rꢁ ꢀꢂ ꢃꢋꢅ
d Ar ꢁ ꢈꢆMeOCꢇꢀꢈꢂ Rꢁ ꢀꢂ ꢃꢃꢅ ꢄ Ar ꢁ Phꢂ Rꢁ Meꢂ ꢇꢄꢅ
4 D. Yu, M. Suzuki, L. Xie, S. L. Morris-Natschke and K.-H. Lee, Med.
Res. Rev., 2003, 23, 322.
5 B. S. Kirkiacharian, E. Clercq, R. Kurkjian and C. Pannecouque, J. Pharm.
Chem., 2008, 42, 265.
6 Z. H. Chohan, A. U. Shaikh, A. Rauf and C. T. Supuran, J. Enz. Inhib.
Med. Chem., 2006, 21, 741.
ꢁi Ar ꢁ ꢋꢆO2NCꢇꢀꢈꢂ Rꢁ ꢀꢂ no ꢍroduct
ꢁꢂ Ar ꢁ ꢈꢆMeOCꢎOꢏCꢇꢀꢈꢂ Rꢁ ꢀꢂ no ꢍroduct
Scheme 1 Reagents and conditions: i, 1/2 = 1:1.5 (mol/mol), TsOH
(20 mol%), neat, 80 °C, 4 h (6 h for 3f).
Heating plays an important role in this reaction. The yield was not
improved noticeably by raising the temperature to 120°C (entry 13)
while a lower yield was obtained on lowering the temperature
(entry 14). By prolongation or shortening the reaction time the
yield was not raised (entries 15,16). We have observed that
20 mol% of TsOH as the catalyst provided better yield (78%)
compared to that (45%) when 10 mol% of TsOH was used
(entry 17). Increase in the catalyst loading to 30 mol% did not
affect the reaction outcome (entry 18). After considering the above
experiments, the optimum conditions were selected to be heating
neat mixture of 4-hydroxycoumarin 1 (1 mmol), styrene 2a
(1.5 mmol) and 20 mol% of TsOH at 80°C for 4 h.
Based on the optimized reaction conditions, we checked the
scope and limitations of our reaction procedure (see Scheme 1).
Styrenes with alkyl and halogen substituents in arene moiety
2b-g reacted closely to their parent analogue 1a and gave the
corresponding products 3b-g in satisfactory yields. To our
delight, we have successfully synthesized phenprocoumon 3h in
68% yield by coupling b-methylstyrene 2h with 4-hydroxy-
coumarin 1. Unfortunately but not surprisingly, styrenes 2i,j with
electron-withdrawing groups in arene core did not react to give
desired products 3i,j.
We were interested to prepare anticoagulant drug phenpro-
coumon 3h in gram scale range. For this purpose, the reaction
between 4-hydroxycoumarin 1 (10 mmol) and b-methylstyrene 2h
(15 mmol) under the optimized conditions afforded 1.7 g (61%)
of the desired product 3h.
In summary, we have developed an efficient procedure for the
direct C-benzylation of 4-hydroxycoumarin with styrenes using
available, cheap and metal-free catalyst under solvent-free and
open-air conditions. By this simple and green procedure, we can
synthesize various important 4-hydroxycoumarin derivatives
including phenprocoumon in good yields.
7 A. C. Luchini, P. Rodrigues-Orsi, S. H. Cestari, L. N. Seito,
A. Witaicenis, C. H. Pellizzon and L. C. Di Stasi, Biol. Pharm.
Bull., 2008, 31, 1343.
8 D. Chiarino, G. C. Grancini, V. Frigeni and A. Carenzi, Eur. Pat. Appl.,
1988, EP 284017.
9 G. Cravotto, S. Tagliapietra, R. Cappello, G. Palmisano, M. Curini and
M. Boccalini, Arch. Pharm. Chem. Life Sci., 2006, 339, 129.
10 F. Pérez-Cruz, S. Serra, G. Delogu, M. Lapier, J. D. Maya, C. Olea-Azar,
L. Santana and E. S. Uriarte, Bioorg. Med. Chem. Lett., 2012, 22, 5569.
11 K. P. Barot, S. V. Jain, L. Kremer, S. Singh and M. D. Ghate, Med.
Chem. Res., 2015, 24, 2771.
12 N. Au and A. E. Rettie, Drug Metab. Rev., 2008, 40, 355.
13 M. Rullo and L. Pisani, Chem. Heterocycl. Compd., 2018, 54, 394.
14 R. F. Fatykhov, M. I. Savchuk, E. S. Starnovskaya, M. V. Bobkina,
D. S. Kopchuk, E. V. Nosova, G. V. Zyryanov, I. A. Khalymbadzha,
O. N. Chupakhin, V. N. Charushin and V. G. Kartsev, Mendeleev
Commun., 2019, 29, 299.
15 M. Rueping, B. J. Nachtsheim and E. Sugiono, Synlett, 2010, 10, 1549.
16 X. Lin, X. Dai, Z. Mao and Y. Wang, Tetrahedron, 2009, 65, 9233.
17 P. Thirupathi and S. S. Kim, Tetrahedron, 2010, 66, 2995.
18 C. R. Reddy, B. Srikanth, R. Narsimha and D. S. Shin, Tetrahedron,
2008, 64, 11666.
19 P. Theerthagiri and A. Lalitha, Tetrahedron Lett., 2010, 51, 5454.
20 J. Kischel, K. Mertins, D. Michalik, A. Zapf and M. Beller, Adv. Synth.
Catal., 2007, 349, 865.
21 V. V. Angeles-Dunham, D. M. Nickerson, D. M. Ray and A. E. Mattson,
Angew. Chem., Int. Ed., 2014, 53, 14538.
22 S. Mahato, S. Santra, R. Chatterjee, G. V. Zyryanov, A. Hajra and
A. Majee, Green Chem., 2017, 19, 3282.
23 R. Chatterjee, S. Santra, G. V. Zyryanov and A. Majee, Synthesis, 2019,
51, 2371.
24 R. Chatterjee, S. Mahato, S. Santra, G. V. Zyryanov, A. Hajra and
A. Majee, ChemistrySelect, 2018, 3, 5843.
25 R. Chatterjee, S. Santra, G. V. Zyryanov and A. Majee, J. Heterocycl.
Chem., 2020, 57, 1863.
A. Majee acknowledges financial support from the CSIR
Major Research Project (Ref. no. 02(0383)/19/EMR-II).
A. Mukherjee and S. Santra thank the Russian Science
Foundation for funding (Grant no. 20-73-10205). G. V. Zyryanov
and O. N. Chupakhin are grateful to the Grants Council of the
President of the Russian Federation (no. NSh-2700.2020.3) for
funding.
Received: 26th August 2020; Com. 20/6296
– 124 –