Cu-Catalyzed Enantioselective Amination of Propargylic Esters
A R T I C L E S
effective catalysts to give the corresponding propargylic com-
pounds from propargylic alcohols or their derivatives.11 These
catalytic processes are now becoming a powerful synthetic
method as an alternative to the Nicholas reaction. As an
extension of these studies, their asymmetric versions have also
been disclosed, such as the ruthenium-catalyzed asymmetric
propargylic alkylation of propargylic alcohols with acetone (up
to 82% ee)12 and similar propargylation of aromatic compounds
(up to 95% ee).13,14 Further, we have also disclosed that
ruthenium-catalyzed intramolecular carbon-carbon bond-form-
ing reactions between propargylic alcohols and alkenes gave
the corresponding 1,5-enynes in good to high yields with a high
to excellent enantioselectivity (up to 99% ee),15 while Fu and
Smith have reported nickel-catalyzed enantioselective carbon-
carbon bond-forming reactions at the propargylic position of
propargylic halides.16 These results prompted us to investigate
other transition-metal-catalyzed enantioselective propargylic
substitution reactions with a variety of nucleophiles.
substitution reactions of propargylic esters with various second-
ary amines by using optically active diphosphines such as
BINAP20 and BIPHEP21 as chiral ligands are described in detail,
together with the density functional theory calculation of the
proposed reaction pathway which involves copper-allenylidene
complexes as key intermediates.
Optically active propargylic amines are synthetically versatile
intermediates for the construction of various biologically active
compounds and polyfunctional amino derivatives.22 Recently,
the transition-metal-catalyzed enantioselective addition of ter-
minal alkynes to imines has been developed to produce the
corresponding chiral propargylic amines with a high enantiose-
(9) For recent reviews of transition metal-allenylidene complexes, see:
(a) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45,
2176. (b) Metal Vinylidenes and Allenylidenes in Catalysis: From
ReactiVity to Applications in Synthesis; Bruneau, C., Dixneuf, P. H.,
Eds.; Wiley-VCH: Weinheim, 2008. (c) Cadierno, V.; Gimeno, J.
Chem. ReV. 2009, 109, 3512.
We focused on the copper-catalyzed propargylic amination
of propargylic esters with a variety of amines, where the
corresponding propargylic amines have been produced in good
to high yields.17 In this reaction system, we envisioned that this
propargylic amination may proceed via copper-allenylidene
complexes as key intermediates because only propargylic esters
bearing a terminal acetylene moiety were available as substrates.
In fact, the first successful example of the copper-catalyzed
enantioselective propargylic amination of propargylic acetates
with primary amines was reported by van Maarseveen and co-
workers, where optically active 2,6-bis(oxazolinyl)pyridines
(pybox) worked as good chiral ligands (up to 88% ee).18
Independently, we have found a similar copper-catalyzed
enantioselective reaction,19 and, in the present article, the scope
and limitations of our catalytic enantioselective propargylic
(10) (a) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai,
M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681. (b) Milton,
M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem. Commun. 2004,
2712. (c) Milton, M. D.; Onodera, G.; Nishibayashi, Y.; Uemura, S.
Org. Lett. 2004, 6, 3993. (d) Nishibayashi, Y.; Yoshikawa, M.; Inada,
Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2004, 126, 16066. (e)
Onodera, G.; Matsumoto, H.; Milton, M. D.; Nishibayashi, Y.; Uemura,
S. Org. Lett. 2005, 7, 4029. (f) Onodera, G.; Matsumoto, H.;
Nishibayashi, Y.; Uemura, S. Organometallics 2005, 24, 5799. (g)
Onodera, G.; Nishibayashi, Y.; Uemura, S. Organometallics 2006, 25,
35. (h) Yamauchi, Y.; Onodera, G.; Sakata, K.; Yuki, M.; Miyake,
Y.; Uemura, S.; Nishibayashi, Y. J. Am. Chem. Soc. 2007, 129, 5175.
(i) Yamauchi, Y.; Yuki, M.; Tanabe, Y.; Miyake, Y.; Inada, Y.;
Uemura, S.; Nishibayashi, Y. J. Am. Chem. Soc. 2008, 130, 2908. (j)
Yada, Y.; Miyake, Y.; Nishibayashi, Y. Organometallics 2008, 27,
3614.
(11) For reviews on catalytic propargylic substitution reactions, see: (a)
Nishibayashi, Y.; Uemura, S. Curr. Org. Chem. 2006, 10, 135. (b)
Nishibayashi, Y.; Uemura, S. In ComprehensiVe Organometallic
Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier:
Amsterdam, 2007; Vol. 11, p 123. (c) Kabalka, G. W.; Yao, M.-L.
Curr. Org. Synth. 2008, 5, 28. (d) Ljungdahl, N.; Kann, N. Angew.
Chem., Int. Ed. 2009, 48, 642. (e) Miyake, Y.; Uemura, S.; Nishiba-
yashi, Y. ChemCatChem 2009, 1, 342. (f) Detz, R. J.; Hiemstra, H.;
van Maarseveen, J. H. Eur. J. Org. Chem. 2009, 6263.
(6) (a) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000,
122, 11019. (b) Nishibayashi, Y.; Wakiji, I.; Ishii, Y.; Uemura, S.;
Hidai, M. J. Am. Chem. Soc. 2001, 123, 3393. (c) Nishibayashi, Y.;
Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 7900.
(d) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura,
S. J. Am. Chem. Soc. 2002, 124, 11846. (e) Inada, Y.; Nishibayashi,
Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172. (f)
Nishibayashi, Y.; Inada, Y.; Yoshikawa, M.; Hidai, M.; Uemura, S.
Angew. Chem., Int. Ed. 2003, 42, 1495. (g) Nishibayashi, Y.; Inada,
Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 6060. (h)
Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S.
J. Org. Chem. 2004, 69, 3408. (i) Nishibayashi, Y.; Milton, M. D.;
Inada, Y.; Yoshikawa, M.; Wakiji, I.; Hidai, M.; Uemura, S.
Chem.sEur. J. 2005, 11, 1433. (j) Inada, Y.; Yoshikawa, M.; Milton,
M. D.; Nishibayashi, Y.; Uemura, S. Eur. J. Org. Chem. 2006, 881.
(k) Nishibayashi, Y.; Shinoda, A.; Miyake, Y.; Matsuzawa, H.; Sato,
M. Angew. Chem., Int. Ed. 2006, 45, 4835. (l) Daini, M.; Yoshikawa,
M.; Inada, Y.; Uemura, S.; Sakata, K.; Kanao, K.; Miyake, Y.;
Nishibayashi, Y. Organometallics 2008, 27, 2046. (m) Yamauchi, Y.;
Miyake, Y.; Nishibayashi, Y. Organometallics 2009, 28, 48. (n) Kanao,
K.; Miyake, Y.; Nishibayashi, Y. Organometallics 2010, 29, 2126.
(7) (a) Nishibayashi, Y.; Imajima, H.; Onodera, G.; Hidai, M.; Uemura,
S. Organometallics 2004, 23, 26. (b) Nishibayashi, Y.; Imajima, H.;
Onodera, G.; Inada, Y.; Hidai, M.; Uemura, S. Organometallics 2004,
23, 5100. (c) Miyake, Y.; Endo, S.; Nomaguchi, Y.; Yuki, M.;
Nishibayashi, Y. Organometallics 2008, 27, 4017. (d) Miyake, Y.;
Endo, S.; Yuki, M.; Tanabe, Y.; Nishibayashi, Y. Organometallics
2008, 27, 6039. (e) Tanabe, Y.; Kanao, K.; Miyake, Y.; Nishibayashi,
Y. Organometallics 2009, 28, 1138.
(12) (a) Nishibayashi, Y.; Onodera, G.; Inada, Y.; Hidai, M.; Uemura, S.
Organometallics 2003, 22, 873. (b) Inada, Y.; Nishibayashi, Y.;
Uemura, S. Angew. Chem., Int. Ed. 2005, 44, 7715.
(13) (a) Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Angew. Chem., Int.
Ed. 2007, 46, 6488. (b) Matsuzawa, H.; Kanao, K.; Miyake, Y.;
Nishibayashi, Y. Org. Lett. 2007, 9, 5561. (c) Kanao, K.; Matsuzawa,
H.; Miyake, Y.; Nishibayashi, Y. Synthesis 2008, 3869. (d) Kanao,
K.; Miyake, Y.; Nishibayashi, Y. Organometallics 2009, 28, 2920.
(14) For a recent review, see: Catalytic Asymmetric Friedel-Crafts
Alkylations; Bandini, M., Umani-Ronchi, A., Eds.; VCH: Weinheim,
2009.
(15) Fukamizu, K.; Miyake, Y.; Nishibayashi, Y. J. Am. Chem. Soc. 2008,
130, 10498.
(16) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.
(17) (a) Imada, Y.; Yuasa, M.; Nakamura, I.; Murahashi, S.-I. J. Org. Chem.
1994, 59, 2282. (b) Geri, R.; Polizzi, C.; Lardicci, L.; Caporusso, A. M.
Gazz. Chim. Ital. 1994, 124, 241. (c) Godfrey, J. D., Jr.; Mueller,
R. H.; Sedergran, T. C.; Soundararajan, N.; Colandrea, V. J. Tetra-
hedron Lett. 1994, 35, 6405.
(18) (a) Detz, R. J.; Delville, M. M. E.; Hiemstra, H.; van Maarseveen,
J. H. Angew. Chem., Int. Ed. 2008, 47, 3777. (b) Prof. van Maarseveen
and co-workers achieved the first enantioselective propargylic ami-
nation and presented a part of their result at the PAC Symposium
2007 (March 1, 2007, Utrecht).
(19) A preliminary result of the copper-catalyzed enantioselective prop-
argylic amination has already been reported by our group: Hattori,
G.; Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Angew. Chem., Int.
Ed. 2008, 47, 3781.
(8) The result of the density functional theory calculation on the model
reaction also supports the proposed reaction pathway of the ruthenium-
catalyzed propargylic substitution reactions of propargylic alcohols
with nucleophiles, where ruthenium-allenylidene complexes work as
key intermediates: (a) Ammal, S. C.; Yoshikai, N.; Inada, Y.;
Nishibayashi, Y.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 9428.
(b) Sakata, K.; Miyake, Y.; Nishibayashi, Y. Chem. Asian J. 2009, 4,
81.
(20) (R)-BINAP ) (R)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl: Noyori,
R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
(21) BIPHEP ) 2,2′-bis(diphenylphosphino)-1,1′-biphenyl: Schmid, R.;
Foricher, J.; Cereghetti, M.; Scho¨nholzer, P. HelV. Chim. Acta 1991,
74, 370.
9
J. AM. CHEM. SOC. VOL. 132, NO. 30, 2010 10593