pubs.acs.org/joc
including antibacterial,5 antimicrobial,6 antiarrhythmic,7 anti-
Efficient Syntheses of Thiadiazole Peptides
cancer,8,9 anti-inflammatory,10 antidepressant11 and anti-HIV12
activities.
Alan R. Katritzky,* Claudia El-Nachef, Kiran Bajaj,
Jonathan Kubik, and Danniebelle N. Haase
In previous efforts to develop new chiral nonproteinogenic
R-amino acids and peptides that could be incorporated into
heterocycles, we synthesized chiral 1,2,4-oxadiazoles13 utiliz-
ing N-protected (R-aminoacyl)benzotriazoles.14 We now re-
port the synthesis of chiral 1,3,4-thiadiazolo-substituted amino
acids and peptides as potential building blocks. Similar com-
pounds with 2-amino-1,3,4-thiadiazoles as coupling units to
peptides are known to be potent APN inhibitors15 and metal-
loprotease inhibitors.16 Moreover, reports exist of the synthesis
of thiadiazoles from amino acids for biological testing,12,17
which disclosed low toxicity and, in the case of phenylalanine
derivatives, anti-inflammatory activity.18 Isothiocyanates are
often used to form thiosemicarbazide intermediates for con-
version to 1,3,4-thiadiazoles.5,12,17,18
Center for Heterocyclic Compounds, Department of
Chemistry, University of Florida, Gainesville,
Florida 32611-7200
Received May 11, 2010
Here, we convert amino acid derivatives 1a-c (1cþ1c0) under
microwave irradiation first into thiosemicarbazides 3a-c
(3cþ3c0); we next cyclized 3 to afford enantiomerically pure
1,3,4-thiadiazoles 4a-c, which in turn provide the first synth-
esis of chirally pure peptidoylaminothiadiazoles.
Compounds 1 and 5 (Tables 3 and 4) were prepared
following established procedures.14,19 Thiosemicarbazides
2 were synthesized from 1-(alkylthiocarbamoyl)benzotria-
zoles and hydrazine20 (Table 5).
Novel N-(Cbz-aminoacyl)thiosemicarbazides 3a-c were
cyclized by treatment with sulfuric acid to give 1,3,4-thiadia-
zoles 4a-c. Compounds 4a-c reacted with N-(Cbz-amino-
acyl)- and -dipeptidoylbenzotriazoles to afford chirally pure
1,3,4-thiadiazol-2-yl-substituted amino acids 6a-c and
dipeptides 7a-c.
N-(Cbz-R-aminoacyl)benzotriazoles 1a-c and (1cþ1c0)
reacted with thiosemicarbazides 2a,b under microwave irra-
diation to yield precursors 3a-c and (3cþ3c0) (68-79%).
The enantiopurity of compound 3c was confirmed by HPLC-
UV; as expected, HPLC analysis of 3c showed a single peak
with nearly the retention time (7.31 min) as that of one of the
two peaks (7.10 and 7.38 min) obtained from the racemic
mixture (3cþ3c0). Compounds 3a-c and the racemic mixture
(3cþ3c0) each underwent concurrent cyclization and depro-
tection of the Cbz group on treatment with concentrated
sulfuric acid12,17 to produce 1,3,4-thiadiazoles 4a-c and
(4cþ4c0) in yields of 53-73% (Scheme 1, Table 1).
Attempts to discover peptide analogues with increased
chemical stability and oral availability have replaced peptide
fragments such as -NHCO-CHR- by a wide variety of
alternative structural moieties. In particular, heterocyclic
moieties attached to peptides and R-amino acids have attrac-
ted considerable interest.1-4
Among important five-membered heterocyclic synthetic
building blocks in medicinal, agricultural, and materials chem-
istry, 1,3,4-thiadiazoles exhibit diverse biological properties,
In the 1H NMR, the characteristic peaks of the NH
protons at δ 9.40 and 8.24 ppm of compound 3c disappeared
when thiadiazole 4c was formed. The removal of the Cbz
protecting group was also evident from the aromatic region
(1) Adlington, R. M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J.; Tang,
L. T. J. Chem. Soc., Perkin Trans. 1 2000, 2311–2316.
(2) Ursic, U.; Bevk, D.; Pirc, S.; Pezdirc, L.; Stanovnik, B.; Svete, J.
Synthesis 2006, 2376–2384.
(11) Clerici, F.; Pocar, D. J. Med. Chem. 2001, 44, 931–936.
(12) Akhtar, T.; Hameed, S.; Al-Masoudi, N. A.; Khan, K. M. Heteroat.
Chem. 2007, 18, 316–322.
(3) Gavrilyuk, J. I.; Lough, A. J.; Batey, R. A. Tetrahedron Lett. 2008, 49,
4746–4749.
(13) Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. ARKIVOC 2005,
36–55.
(4) Severino, B.; Fiorino, F.; Perissutti, E.; Frecentese, F.; Cirino, G.;
Roviezzo, F.; Santagada, V.; Caliendo, G. Bioorg. Med. Chem. 2008, 16,
6009–6020.
(5) Anbalagan, N.; Gunasekaran, V.; Leonard, J. T. Chem. Pharm. Bull.
2003, 51, 162–170.
(6) Hussain, S.; Sharma, J.; Amir, M. E. J. Chem. 2008, 5, 963–968.
(7) Abdel-Aziz, H. A.; Abdel-Wahab, B. F.; El-Sharief, M. A. M. Sh.;
Abdulla, M. M. Monatsh. Chem. 2009, 140, 431–437.
(8) Wang, T.; Zhang, Y. H.; Yu, S.; Ji, H.; Lai, Y. S.; Peng, S. X. Chin.
Chem. Lett. 2008, 19, 928–930.
(9) Wei, M.-X.; Feng, L.; Li, X.-Q.; Zhou, X.-Z.; Shao, Z.-H. Eur. J. Med.
Chem. 2009, 44, 3340–3344.
(10) Salgin-Goksen, U.; Gokhan-Kelekci, N.; Goktas, O.; Koysal, Y.;
Kilic, E.; Isik, S.; Aktay, G.; Ozalp, M. Bioorg. Med. Chem. 2007, 15, 5738–
5751.
(14) Katritzky, A. R.; Singh, A.; Haase, D. N.; Yoshioka, M. ARKIVOC
2009, 47–56.
(15) Li, S.-H.; Li, G.; Huang, H.-M.; Xiong, F.; Liu, C.-M.; Tu, G.-G.
Arch. Pharm. Res. 2008, 31, 1231–1239.
(16) Andrews, R. C.; et al. Int. Patent Appl. WO9838179, 1998.
(17) Pintilie, O.; Profire, L.; Sunel, V.; Popa, M.; Pui, A. Molecules 2007,
12, 103–113.
(18) Moise, M.; Sunel, V.; Profire, L.; Popa, M.; Desbrieres, J.; Peptu, C.
Molecules 2009, 14, 2621–2631.
(19) Katritzky, A. R.; Angrish, P.; Todadze, E. Synlett 2009, 2329–
2411.
(20) Katritzky, A. R.; Khashab, N. M.; Gromova, A. V. ARKIVOC 2006,
226–236.
(21) Hu, B. X.; Shen, Z. L.; Lu, J.; Hu, X. Q.; Mo, W. M.; Sun, N.; Xu, D.
Phosphorus, Sulfur Silicon Relat. Elem. 2009, 184, 523–535.
DOI: 10.1021/jo100922c
r
Published on Web 08/09/2010
J. Org. Chem. 2010, 75, 6009–6011 6009
2010 American Chemical Society