Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 6
DOI: 10.1039/C8OB01103F
Journal Name
COMMUNICATION
Ramachandran, A. Tafelska-Kaczmarek and A. Chatterjee, J. Org.
Chem., 2012, 77, 9329–9333; (d) B. Zhang and X. Zhang, Chin. J.
Chem., 2016, 34, 477–480; (e) X. Yang, Z.-H. Cao, Y. Zhou, F.
Cheng, Z.-W. Lin, Z. Ou, Y. Yuan and Y.-Y. Huang, Org. Lett., 2018,
20, 2585–2589; (f) D. Seyferth, R. M. Simon, D. J. Sepelak and H.
A. Klein, J. Am. Chem. Soc., 1983, 105, 4634–4639; (g) T. Ishihara,
S. Miwatashi, M. Kuroboshi and K. Utimoto, Tetrahedron Lett.,
1991, 32, 1069–1072; (h) Z. Y. Yang and D. J. Burton, J. Org.
Chem., 1991, 56, 1037–1041; (i) M. Rajaonah, M. H. Rock, J.-P.
Bégué, D. Bonnet-Delpon, S. Condon and J.-Y. Nédélec,
Tetrahedron Lett., 1998, 39, 3137–3140; (j) M. Kirihara, T.
Takuwa, S. Takizawa, T. Momose and H. Nemoto, Tetrahedron,
2000, 56, 8275–8280; (k) W. Peng, P. He, S. Zhu and Z. Li,
Tetrahedron Lett., 2004, 45, 3677–3680; (l) W. Peng, J. Zhao and
S. Zhu, J. Fluor. Chem., 2006, 127, 360–366.
Conclusions
A
new method for the preparation of (2-
fluoroallyl)pinacolboronates was developed involving CuCl-
catalyzed isomerization of readily available gem-
chlorofluorocyclopropanes
to
stereoisomeric
(or
regioisomeric) mixtures of 2-fluoroallyl chlorides, followed by
Pd-catalyzed borylation with B2pin2 in the presence of [(2-
MeAll)PdCl]2/TMEDA or [(2-MeAll)Pd(IPr)Cl]. Various (2-
fluoroallyl)pinacolboronates were obtained with high Z-
selectivity, which were shown to be useful for anti-selective 2-
fluoroallylboration of aromatic and aliphatic aldehydes.
4 For 3,3-difluoroallylic nucleophiles, see: T. Kumar, F. Massicot, D.
Harakat, S. Chevreux, A. Martinez, K. Bordolinska, P.
Preethalayam, R. Kokkuvayil Vasu, J.-B. Behr, J.-L. Vasse and F.
Jaroschik, Chem. Eur. J., 2017, 23, 16460–16465.
Conflicts of interest
There are no conflicts of interest to declare.
5 For 3-fluoroallylic nucleophiles, see: A. Macé, F. Tripoteau, Q.
Zhao, E. Gayon, E. Vrancken, J.-M. Campagne and B. Carboni, Org.
Lett., 2013, 15, 906–909.
6 For reviews, see: (a) J. M. Percy, Top. Curr. Chem., 1997, 193,
131–195; (b) G. Landelle, M. Bergeron, M.-O. Turcotte-Savard and
J.-F. Paquin, Chem. Soc. Rev., 2011, 40, 2867–2908; (c) H. Yanai
and T. Taguchi, Eur. J. Org. Chem., 2011, 2011, 5939–5954; (d) A.
S. Konev and A. F. Khlebnikov, Collect. Czech. Chem. Commun.,
2008, 73, 1553–1611.
Acknowledgements
This work was funded by the Russian Federation President
Council for Grants (grant no. MK-390.2018.3). The authors
greatly thank Dr. Roman A. Novikov from ZIOC RAS for 1D and
2D NMR assistance.
7 For the most recent advances in functionalized fluoroalkene
synthesis, see: (a) L. Yang, W.-W. Ji, E. Lin, J.-L. Li, W.-X. Fan, Q. Li
and H. Wang, Org. Lett., 2018, 20, 1924–1927; (b) X. Lu, Y. Wang,
B. Zhang, J.-J. Pi, X.-X. Wang, T.-J. Gong, B. Xiao and Y. Fu, J. Am.
Chem. Soc., 2017, 139, 12632–12637; (c) J. Li, Q. Lefebvre, H.
Yang, Y. Zhao and H. Fu, Chem. Commun., 2017, 53, 10299–
10302; (d) S. B. Lang, R. J. Wiles, C. B. Kelly and G. A. Molander,
Angew. Chem. Int. Ed., 2017, 56, 15073–15077; (e) C. D. McCune,
M. L. Beio, J. M. Sturdivant, R. de la Salud-Bea, B. M. Darnell and
D. B. Berkowitz, J. Am. Chem. Soc., 2017, 139, 14077–14089; (f) H.
Sommer and A. Fürstner, Chem. Eur. J., 2017, 23, 558–562; (g) J.
Xie, J. Yu, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew.
Chem. Int. Ed., 2016, 55, 9416–9421.
8 (a) S. Osada, S. Sano, M. Ueyama, Y. Chuman, H. Kodama and K.
Sakaguchi, Bioorg. Med. Chem., 2010, 18, 605–611; (b) J.
Kanazawa, T. Takahashi, S. Akinaga, T. Tamaoki and M. Okabe,
Anti-Cancer Drugs, 1998, 9, 653–657.
9 (a) R. J. Sciotti, M. Pliushchev, P. E. Wiedeman, D. Balli, R. Flamm,
A. M. Nilius, K. Marsh, D. Stolarik, R. Jolly, R. Ulrich and S. W.
Djuric, Bioorg. Med. Chem. Lett., 2002, 12, 2121–2123; (b) Y.
Asahina, K. Iwase, F. Iinuma, M. Hosaka and T. Ishizaki, J. Med.
Chem., 2005, 48, 3194–3202.
Notes and references
1 (a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications, Wiley-VCH Verlag GmbH & Co. KGaA,
2004; (b) I. Ojima, Ed., Fluorine in Medicinal Chemistry and
Chemical Biology, John Wiley & Sons, Ltd, Chichester, UK, 2009;
(c) W. K. Hagmann, J. Med. Chem., 2008, 51, 4359–4369; (d) E. P.
Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly and N. A. Meanwell,
J. Med. Chem., 2015, 58, 8315–8359; (e) P. Richardson, Expert
Opin. Drug Discov., 2016, 11, 983–999.
2 Several types of fluoroallylic nucleophiles are known. For 2-
fluoroallylic nucleophiles, see: (a) G. Lemonnier, T. Poisson, S.
Couve-Bonnaire and X. Pannecoucke, Tetrahedron Lett., 2013, 54,
2821–2824; (b) G. Lemonnier, N. Van Hijfte, M. Sebban, T.
Poisson, S. Couve-Bonnaire and X. Pannecoucke, Tetrahedron,
2014, 70, 3123–3133; (c) G. Lemonnier, N. V. Hijfte, T. Poisson, S.
Couve-Bonnaire and X. Pannecoucke, J. Org. Chem., 2014, 79,
2916–2925; (d) R. Baati, V. Gouverneur and C. Mioskowski, J. Org.
Chem., 2000, 65, 1235–1238; (e) A. Hassan, T. P. Montgomery and
M. J. Krische, Chem. Commun., 2012, 48, 4692–4694; (f) T.
Hayashi, Y. Usuki and H. Iio, J. Fluor. Chem., 2010, 131, 709–713.
3 For 1,1-difluoroallylic nucleophiles, see: (a) P. V. Ramachandran,
A. Tafelska-Kaczmarek and K. Sakavuyi, Org. Lett., 2011, 13, 4044–
4047; (b) V. P. Ramachandran, A. Tafelska-Kaczmarek, K. Sakavuyi
and A. Chatterjee, Org. Lett., 2011, 13, 1302–1305; (c) P. V.
10 S. Oishi, H. Kamitani, Y. Kodera, K. Watanabe, K. Kobayashi, T.
Narumi, K. Tomita, H. Ohno, T. Naito, E. Kodama, M. Matsuoka
and N. Fujii, Org. Biomol. Chem., 2009, 7, 2872–2877.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 4
Please do not adjust margins