Y. Tokoro, A. Nagai and Y. Chujo
Recrystallization from hexane–dichloromethane gave a yellow References
solid in 24% yield (0.70 g, 0.58 mmol). 1H-NMR (CDCl3): δ = 0.53
[1] R. P. Haugland, The Handbook – a Guide to Fluorescent Probes and
Labeling Technologies, 10th edn (Ed.: M. T. Z. Spence), Molecular
Probes: Eugene, OR, 2005, Chapter 1, Section 1.4.
[2] A. Gorman, J. Killoran, C. O’Shea, T. Kenna, W. M. Gallagher,
D. F. O’Sgea, J. Am. Chem. Soc. 2004, 126, 10619.
[3] a) I. García-Moreno, A. Costela, L. Campo, R. Sastre, F. Amat-Guerri,
M. Liras, F. Lo´pez Arbeloa, J. Ban˜uelos Prieto, I. Lo´pez Arbeloa,
J. Phys. Chem. A 2004, 108, 3315; b) T. G. Pavlopoulos, J. H. Boyer,
G. Sathyamoorthi, Appl. Opt. 1998, 37, 7797.
[4] a) Y. L. Chow, C. I. Johansson, Y-H. Zhang, R. Gautron, L. Yang,
A. Rassat,S.-Z. Yang,J.Phys.Org.Chem.1996,9,7;b)E. Cogne´-Laage,
J.-F. Allemand, O. Ruel, J.-B. Baudin, V. Croquette, M. Blanchard-
Desce, L. Jullien, Chem.-Eur. J. 2004, 10, 1445; c) J. Karolin, L. B.-
(6H, -CH2 –CH3), 0.70 (1H), 0.86 (5H), 1.24 (8H, -CH2-), 1.51(4H, -CH2-
), 2.02 (4H, -CO–CH2-), 4.71 (2H, -CH →), 6.18 (2H, -NH–CO–CH2-),
7.27 (6H, Ar–H), 7.37 (4H, Ar–H), 7.52 (8H, Ar–H), 7.70 (2H, Ar–H),
8.26 (2H, Ar–H), 8.53 (4H, Ar–H), 8.72 (2H, Ar–H) ppm. 11B-NMR
(CDCl3): δ = 7.13 ppm. 13C-NMR (CDCl3): δ = 177.00 (<C O),
171.11 (<C O), 143.50 (Ar), 143.39 (Ar), 142.34 (Ar), 142.24 (Ar),
141.95 (Ar), 140.88 (Ar), 140.73 (Ar), 140.14 (Ar), 140.07 (Ar), 139.84
(Ar), 138.18 (Ar), 134.69 (Ar), 134.59 (Ar), 134.29 (Ar), 132.74 (Ar),
132.57 (Ar), 132.29 (Ar), 129.60 (Ar), 128.07 (Ar), 127.65 (Ar), 127.50
(Ar), 126.71 (Ar), 126.58 (Ar), 126.46 (Ar), 123.99 (Ar), 123.93 (Ar),
120.76 (Ar), 120.63 (Ar), 83.48 (Ar–I), 50.31 (-CH→), 36.50, 31.28,
25.32, 22.40, 18.75, 13.96. IR(KBr): ν = 3418, 3331, 3070, 3045,
3006, 2954, 2926, 2855, 1645, 1578, 1575, 1504, 1462, 1393, 1307,
1276, 1192, 1145, 1114, 1070, 1022, 1003, 962, 882, 840, 818, 782,
738, 706, 666, 642 cm−1. HRMS: m/z, calcd for C60H60B2I2N6O4:
1204.2952; found: 1204.2997 [M]+. Anal. calcd for C60H60B2I2N6O4:
C, 59.82; H, 5.02; N, 6.98. Found: C, 59.50; H, 4.88; N, 6.99.
´
Å. Johansson,L. Strandberg,T. Ny,J.Am.Chem.Soc. 1994,116,7801;
´
d) C.-W. Wan, A. Burghart, J. Chen, F. Bergstro¨m, L. B.-Å. Johanson,
M. F. Wolford, T. G. Kim, M. R. Topp, R. M. Hochstrasser, K. Burgess,
Chem. Eur. J. 2003, 9, 4430; e) Q. Wu, M. Esteghamatian, N.-X. Hu,
Z. Popovic, G. Enright, Y. Tao, M. D’Iorio, S. Wang, Chem. Mater.
2000, 12, 79; f) S. Kappaun, S. Rentenberger, A. Pogantsch, E. Zojer,
K. Mereiter, G. Trimmel, R. Saf, K. C. Mo¨ller, F. Stelzer, C. Slugovc,
Chem. Mater. 2006, 18, 3539; g) Y. Cui, S. Wang, J. Org. Chem. 2006,
71, 6485; h) A. Nagai, K. Kokado, Y. Nagata, Y. Chujo, J. Org. Chem.
2008, 73, 8605.
Poly1
[5] a) Y. Nagata, Y. Chujo, Macromolecules 2008, 41, 2809; b) Y. Nagata,
H. Otaka, Y. Chujo, Macromolecules 2008, 41, 737; c) Y. Nagata,
Y. Chujo, Macromolecules 2007, 40, 6; d) Y. Nagata, Y. Chujo,
Macromolecules 2008, 41, 3488; e) A. Nagai, J. Miyake, K. Kokado,
Y. Nagata, Y. Chujo, J. Am. Chem. Soc. 2008, 130, 15276; f) A. Nagai,
K. Kokado, Y. Nagata, Y. Chujo, Macromolecules 2008, 41, 8295; g)
H. Li, F. Ja¨kle, Macromolecules 2009, 42, 3448.
[6] a)G. Hadziioannou,P. F. vanHutten(Eds.),SemiconductingPolymers,
Wiley-VCH: Weinheim, 2000; b) G. Hughes, M. H. Bryce, J. Mater.
Chem. 2005, 15, 94; c) A. P. Kulkarni, C. J. Tonzola, A. Babel,
S. A. Jenekhe, Chem. Mater. 2004, 16, 4556; d) T. A. Skotheim,
R. L. Elsenbaumer, J. R. Reynolds, Eds. Handbook of Conducting
Polymers, 2nd edn, Marcel Dekker: New York, 1997.
A typical procedure is shown as follows: triethylamine (0.70 ml)
was added to a solution of 6 (0.170 g, 0.14 mmol), 1,4-diethynyl-
2,5-dioctyloxybenzene (0.053 g, 0.140 mmol), Pd(PPh3)4 (8.10 mg,
7.00 µmol), CuI (2.60 mg, 14.0 µmol) in THF (1.40 ml) at room
temperature. After the mixture had been stirred at 40 ◦C for 48 h, a
smallamountofCHCl3 wasaddedandpouredintoalargeexcessof
methanol to precipitate the polymer. The polymer was purified by
repeated precipitations from a small amount of CHCl3 into a large
excess of methanol and hexane respectively to give a red solid
1
in 80.7% yield (0.15 g, 0.11 mmol). Mn = 5319. H-NMR (CDCl3):
[7] a) G. Bidan, S. Guillerez, V. Sorokin, Adv. Mater. 1996, 8, 157; b)
H. Goto, Y. Okamoto, E. Yashima, Macromolecules 2002, 35, 4590;
c) R. Azmi, E. Mena-Osteritz, R. Bose, J. Benet-Buchholz, P. Bauerle,
J. Mater. Chem. 2006, 16, 728.
δ = 0.55 (6H, -CH2 –CH3), 0.70 (1H), 0.86 (9H), 1.23(20H, -CH2-),
1.37 (6H), 1.53 (8H, -CH2-), 1.94 (4H, -CH2-), 2.02 (4H, -CO–CH2-),
4.12 (4H), 4.74 (2H, -CH →), 6.22 (2H, -NH–CO–CH2-), 7.11 (2H,
Ar–H), 7.29 (6H, Ar–H), 7.42 (4H, Ar–H), 7.55 (8H, Ar–H), 7.68 (2H,
Ar–H), 8.02 (2H, Ar–H), 8.58 (2H, Ar–H), 9.05 (2H, Ar–H), 9.07 (2H,
Ar–H) ppm. 11B-NMR (CDCl3): δ = 4.40 ppm. 13C-NMR (CDCl3):
δ = 177.08 (<C O), 171.17 (<C O), 153.70 (Ar), 141.29 (Ar),
140.72 (Ar), 137.59 (Ar), 135.48 (Ar), 134.65 (Ar), 134.32 (Ar), 132.85
(Ar), 132.69 (Ar), 132.39 (Ar), 128.12 (Ar), 127.64 (Ar), 127.50 (Ar),
126,74 (Ar), 126.60 (Ar), 126.49 (Ar), 123.11 (Ar), 119.00 (Ar), 115.7
(Ar), 113.49 (Ar), 112.67 (Ar), 92.03 (Ar), 90.91 (Ar), 69.35 (-OCH2-),
50.47 (-CH→), 36.69, 36.62, 31.74, 31.46, 31.31, 29.57, 29.40, 29.26,
26.02, 25.36, 22.60, 22.43, 22.37, 22.30, 19.01, 18.82, 14.07, 13.96,
13.83 ppm. IR(KBr): ν = 3418, 2926, 2854, 2208 (-C C-), 1645,
1574, 1498, 1395, 1309, 1270, 1197, 1192, 1143, 1034, 1003, 860,
848, 820, 783, 738, 705 cm−1. Anal. calcd for C86H96B2N6O6: C,
77.58; H, 7.27; N, 6.31. Found: C, 76.22; H, 7.03; N, 6.21.
[8] a) E. E. Havinga, M. M. Bouman, E. W. Meijer, A. Pomp, M. M. J.
Simenon, Synth. Met. 1994, 66, 93; b) M. R. Majidi, L. A. P. Kane-
Maguire, G. G. Wallace, Polymer 1994, 35, 3113; c) S.-J. Su,
M. Takeishi, N. Kuramoto, Macromolecules 2002, 35, 5752;
d) H. Goto, K. Akagi, Macromol. Rapid Commun. 2004, 25, 1482.
[9] a) R. Liu, F. Sanda, T. Masuda, Macromolecules 2008, 41, 5089; b)
R. Nomura, J. Tabei, T. Masuda, Macromolecules, 2001, 123, 8430.
[10] M. C. Haberecht, J. B. Heilmann, A. Haghiri, M. Bolte, J. W. Bats,
H.-W. Lerner, M. C. Holthausen, M. Wagner, Z. Anorg. Allg. Chem.
2004, 630, 904.
[11] A. Sundararaman, K. Venkatasubbaiah, M. Victor, L. N. Zakharov,
A. L. Rheingold, F. Ja¨kle, J. Am. Chem. Soc. 2006, 128, 16554.
[12] a) Y. Qin, I. Kiburu, S. Shah, F. Ja¨kle, Org. Lett. 2006, 8, 5227; b)
S. Kappaum, S. Rentenberger, A. Pogantsch, E. Zojer, K. Mereiter,
G. Trimmel, R. Saf, K. C. Mo¨ller, F. Stelzer, C. Slugovc, Chem. Mater.
2006, 18, 3539; c) Y. Qin, I. Kiburu, S. Shah, F. Ja¨kle, Macromolecules
2006, 39, 9041.
[13] a) P. Yuster, S. I. J. Weissman, J. Chem. Phys. 1949, 17, 1182; b)
D. S. McClure, J. Chem. Phys. 1949, 17, 905; c) T. Yogo, Y. Urano,
Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem. Soc. 2005, 127,
12162.
[14] a) N. Sarkar, K. Das, S. Das, A. Datta, R. Dutta, K. Bhattacharyya,
J. Chem.Soc.,FaradayTrans. 1996, 92, 3097;b) C. J. Seliskar, L. Brand,
J. Am. Chem. Soc. 1971, 93, 5414; c) P. J. Sadkowski, G. R. Fleming,
Chem. Phys. 1980, 54, 79.
[15] C. Weder, M. S. Wrighton, Macromolecules 1996, 29, 5197.
[16] A. Sudaraman, K. Venkatasubbaiah, M. Victor, L. N. Zakharov,
A. L. Rheingold, F. Ja¨kle, J. Am. Chem. Soc. 2006, 128, 16554.
[17] K. Kokado, Y. Chujo, Macromolecules 2009, 42, 1418.
Poly2
1
Yield = 59.1% (0.11 g, 0.07 mmol). Mn = 7880. H-NMR (CDCl3):
δ = 0.55 (6H, -CH2 –CH3), 0.71 (1H), 0.87 (5H), 1.22 (8H, -CH2-),
1.52 (4H, -CH2-), 2.03 (4H, -CO–CH2-), 4.75 (2H, -CH →), 6.19 (2H,
-NH–CO–CH2-), 7.29 (4H, Ar–H), 7.41 (6H, Ar–H), 7.54 (8H, Ar–H),
7.71 (1H, Ar–H), 7.79 (1H, Ar–H), 8.01 (1H, Ar–H), 8.12 (3H, Ar–H),
8.61 (2H, Ar–H), 8.79 (1H, Ar–H), 8.85 (1H, Ar–H), 8.94 (2H, Ar–H)
ppm. 11B-NMR (CDCl3): δ = 6.35 ppm. IR (KBr): ν = 3419, 3071,
3007,2955,2926,2862,2205(-C C-),1652,1574,1499,1475,1447,
1396, 1310, 1252, 1240 (C–F), 1201 (C–F), 1144 (C–F), 1035, 1003,
882, 849, 820, 783, 711, 706 cm−1. Anal. calcdforC79H62B2N6O4F20
C, 60.79; H, 4.00; N, 5.38. Found: C, 59.40; H, 4.07; N, 5.16.
:
c
Copyright ꢀ 2009 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2010, 24, 563–568