ORGANIC
LETTERS
2010
Vol. 12, No. 17
3736-3739
Fe(II)-Catalyzed Amination of Aromatic
C-H Bonds via Ring Opening of
2H-Azirines: Synthesis of
2,3-Disubstituted Indoles
Samaresh Jana, Mack D. Clements, Barry K. Sharp, and Nan Zheng*
Department of Chemistry and Biochemistry, UniVersity of Arkansas,
FayetteVille, Arkansas 72701
Received May 17, 2010
ABSTRACT
A general method for the synthesis of 2,3-disubstituted indoles is described. The key feature of this method is the amination of aromatic C-H
bonds via FeCl2-catalyzed ring opening of 2H-azirines. The method tolerates a variety of functional groups such as Br, F, NO2, OMe, CF3,
OTBS, alkenes, and OPiv. The method can also be extended to synthesize azaindoles.
The widespread occurrence of the indole motif in bioactive
natural products and pharmaceuticals has drawn synthetic
chemists’ long-lasting interest in developing general methods
to prepare them.1a,b In fact, almost all conceivable bond
disconnections for the indole nucleus have been explored.1c,d
Yet the efficiency and the substrate scope for most of these
approaches still leave much to be desired. For example, very
few of them employ direct amination of aromatic C-H
bonds,2 which obviates the need for prefunctionalizing the
substrate. Furthermore, simultaneous introduction of sub-
stituents at C2 and C3 of the indole nucleus remains a
continual challenge for organic chemists.3 Additionally, most
of the existing methods are not particularly effective for
preparing azaindoles that are of great interest to medicinal
chemists.4
We were interested in developing a general and catalytic
method for the synthesis of 2,3-disubstituted indoles based
on the direct amination of aromatic C-H bonds. To
implement this strategy, a suitable vinyl nitrene precursor
would be needed. Vinyl azides are typically used as
precursors to generate the vinyl nitrenes.5a,b However, their
use as the vinyl nitrene precursor is often limited by their
narrow substrate scope as they are generally prepared by the
condensation of methyl azidoacetate and aromatic
(3) For some recent examples, see: (a) Shi, Z.; Zhang, C.; Li, S.; Pan,
D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572–
4576. (b) Cariou, K.; Ronan, B.; Mignani, S.; Fensterbank, L.; Malacria,
M. Angew. Chem., Int. Ed. 2007, 46, 1881–1884. (c) Liu, K. G.; Robichaud,
A. J.; Lo, J. R.; Mattes, J. F.; Cai, Y. Org. Lett. 2006, 8, 5769–5771. (d)
Barluenga, J.; Jime´nez-Aquino, A.; Aznar, F.; Valde´s, C. J. Am. Chem.
Soc. 2009, 131, 4031–4041. (e) Cui, S.-L.; Wang, J.; Wang, Y.-G. J. Am.
Chem. Soc. 2008, 130, 13526–13527.
(1) For recent reviews on biological activities and synthesis of indoles,
see: (a) Kawasaki, T.; Higuchi, K. Nat. Prod. Rep. 2007, 24, 843–868. (b)
Brancale, A.; Silvestri, R. Med. Res. ReV. 2007, 27, 209–238. (c) Humphrey,
G. R.; Kuethe, J. T. Chem. ReV. 2006, 106, 2875–2911. (d) Sundberg, R. J.
Indoles; Academic Press: London, 1996.
(4) (a) Roy, P. J.; Dufresne, C.; Lachance, N.; Leclerc, J.-P.; Boisvert,
M.; Wang, Z.; Leblanc, Y. Synthesis 2005, 2751–2757. (b) Wang, T.; Yin,
Z.; Zhong, Z.; Bender, J. A.; Yang, Z.; Johnson, G.; Yang, Z.; Zadjura,
L. M.; D’Arienzo, C. J.; Parker, D. D.; Gesenberg, C.; Yamanaka, G. A.;
Gong, Y.-F.; Ho, H.-T.; Fang, H.; Zhou, N.; McAuliffe, B. V.; Eggers,
B. J.; Fan, L.; Nowicka-Sans, B.; Dicker, I. B.; Gao, Q.; Colonno, R. J.;
Lin, P.-F.; Meanwell, N. A.; Kadow, J. F. J. Med. Chem. 2009, 52, 7778–
7787.
(2) (a) Hsieh, T. H.; Dong, V. M. Tetrahedron 2009, 65, 3062–3068.
(b) Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452–
6455. (c) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver,
T. G. J. Am. Chem. Soc. 2007, 129, 7500–7501. (d) Du, Y.; Liu, R.; Linn,
G.; Zhao, K. Org. Lett. 2006, 8, 5919–5922. (e) Carpenter, J. F. J. Org.
Chem. 1993, 58, 1607–1609. (f) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc.
2010, 132, 3676–3677.
10.1021/ol101130e 2010 American Chemical Society
Published on Web 08/03/2010