C O M M U N I C A T I O N S
Table 2. Reaction Substrate Scope
Scheme 2. Transformation of Product 2a
treatment of 2a with sodium cyanoborohydride afforded the spiroin-
doline 3. The CdC and CdN could be reduced by Pd/C catalyzed
hydrogenation to give spiroindoline 4. Interestingly, for Pd(OH)2/C
catalyzed hydrogenation, the Bn group was also removed. In all cases,
there was no notable loss of the optical purity.10
In summary, we have developed a highly enantioselective synthesis
of spiroindolenine derivatives via Ir-catalyzed intramolecular C-3 allylic
alkylation of indoles. The spiroindolenine derivatives were obtained
in excellent yields with up to >99/1 dr and 97% ee. Further extension
of the reaction scope and development of more efficient catalytic
systems are currently underway in our laboratory.
Acknowledgment. We thank the NSFC (20872159, 20821002,
20923005) and National Basic Research Program of China (973
Program 2009CB825300) for generous financial support.
Supporting Information Available: Experimental procedures and
characterization of the products. This material is available free of charge
References
(1) (a) Chou, T. Q. Chin. J. Physiol. 1931, 5, 345. (b) Liu, C.-T.; Wang, Q.-W.;
Wang, C.-H. J. Am. Chem. Soc. 1981, 103, 4634. (c) Verbitski, S. M.; Mayne,
C. L.; Davis, R. A.; Concepcion, G. P.; Ireland, C. M. J. Org. Chem. 2002,
67, 7124. (d) Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami,
Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Tetrahedron Lett. 1993,
34, 2355. (e) Jadulco, R.; Edrada, R. A.; Ebel, R.; Berg, A.; Schaumann, K.;
Wray, V.; Steube, K.; Proksch, P. J. Nat. Prod. 2004, 67, 78.
(2) Selected examples in total synthesis: (a) Magnus, P.; Mugrage, B.; DeLuca,
M. R.; Cain, G. A. J. Am. Chem. Soc. 1989, 111, 786. (b) Magnus, P.;
Mugrage, B.; DeLuca, M.; Cain, G. A. J. Am. Chem. Soc. 1990, 112, 5220.
(c) Fuchs, J. R.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 5068. (d) Sabahi,
A.; Novikov, A.; Rainier, J. D. Angew. Chem., Int. Ed. 2006, 45, 4317. (e)
Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794.
Selected examples of construction of spiroindole skeletons: (f) Ibaceta-
Lizana, J. S. L.; Jackson, A. H.; Prasitpan, N.; Shannon, P. V. R. J. Chem.
Soc., Perkin Trans. 2 1987, 1221. (g) Linnepe, P.; Schmidt, A. M.; Eilbracht,
P. Org. Biomol. Chem. 2006, 4, 302.
(3) (a) Austin, J. F.; Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.; MacMillan, D. W. C.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. (b) Trost, B. M.; Quancard,
J. J. Am. Chem. Soc. 2006, 128, 6314, and references therein. (c) Kagawa,
N.; Malerich, J. P.; Rawal, V. H. Org. Lett. 2008, 10, 2381. (d) Eastman,
K.; Baran, P. S. Tetrahedron 2009, 65, 3149.
(4) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005,
127, 4592.
(5) (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Org. Lett. 2008, 10, 1815.
(b) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. Synthesis 2009, 2076. (c)
Stanley, L. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2009, 48, 7841.
(6) For reviews: (a) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349. (b)
Helmchen, G.; Dahnz, A.; Du¨bon, P.; Schelwies, M.; Weihofen, R. Chem.
Commun. 2007, 675. For the first Ir-catalyzed asymmetric allylic alkylation
reaction: (c) Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
(7) Bandini, M.; Melloni, A.; Piccinelli, F.; Sinisi, R.; Tommasi, S.; Umani-
Ronchi, A. J. Am. Chem. Soc. 2006, 128, 1424.
(8) (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164. (b)
Lo´pez, F.; Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 3426.
(c) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 14272. (d) Raskatov, J. A.; Spiess, S.; Gnamm, C.; Bro¨dner,
K.; Rominger, F.; Helmchen, G. Chem.sEur. J. 2010, 16, 6601.
(9) See the Supporting Information (SI).
a Isolated yields of the major diastereoisomer. b Determined by 1H
NMR of the crude reaction mixture. c Determined by chiral HPLC
analysis. d Isolated yields of the minor diastereoisomer.
excellent dr and ee (92-95% yields, 96/4f99/1 dr, 95-96% ee,
entries 1-4, Table 2). Notably, the allyl protecting group in 1d did
not interfere with the alkylation process. The stereochemistry of the
products was determined by X-ray structural determination of their
enantiopure bromine-containing derivatives.9 Substrates bearing either
an electron-donating group (4-Me, 5-MeO, 6-BnO) (entries 5-7, Table
2) or electron-withdrawing group (6-Br, 5-F) (entries 8-9, Table 2)
on the indole core all led to their corresponding products in excellent
yields, dr, and ee (93-98% yields, 96/4f99/1 dr, 88-94% ee). The
2-substituted indolyl allyl carbonates were also tolerated and afforded
the corresponding products in excellent yields and ee (88-90% yields,
91-97% ee, entries 10-11, Table 2), although in moderate dr.
To test the five-member ring spiroindolenine formation, Bandini’s
substrate, by shortening one carbon in 1a (as shown in Scheme
1),7 was tested in the current catalytic system. Interestingly,
tetrahydro-γ-carboline product was obtained,9 which suggests the
formation of spiroindolenine is likely caused by the favorable six-
member ring product by reacting at the C-3 position over the seven-
member ring product at the C-2 position.
(10) The ee of 4 and 5 were determined after their conversion to N-Ts derivatives
(see the SI for details).
JA105111N
The multifunctionalized spiroindolenine products obtained here
could undergo versatile transformation. As shown in Scheme 2,
9
J. AM. CHEM. SOC. VOL. 132, NO. 33, 2010 11419