10.1002/chem.201805945
Chemistry - A European Journal
COMMUNICATION
elimination of phosphine from 1f, generating the final product 2a.
To gain more insight, we followed the 31P NMR spectrum in
ethanol for 2h (for detail see SI). Formation of closely associated
downfield peaks to triphenylphosphine might support the
formation of suitable intermediates during the catalytic cycle. In
addition, there was no decrease in the intensity of the
triphenylphosphine peak, which confirms the regeneration of the
catalyst.[26]
Leuven) and to Karel Duerinckx (KU Leuven) for the assistance
with NMR measurements.
Conflicts of interest
The authors declare no conflict of interest.
Keywords: Dearomatization • Spiroindolenine • Organocatalysis
• Indoles • Flow chemistry.
[1]
[2]
Selected reports on dearomatization: a) A. R. Pape, K. P. Kaliappan,
E. P. Kündig, Chem. Rev. 2000, 100, 2917–2940. b) M. J. James, P.
O’Brien, R. J. K. Taylor, W. P. Unsworth, Chem. - a Eur. J. 2016, 22,
2856–2881. c) C. Zheng, S. You, CHEMPR 2016, 1, 830–857. d) J.
Bariwal, L. G. Voskressensky, E. V. Van der Eycken, Chem. Soc. Rev.
2018, 3831–3848.
Selected reports on spiro-compounds: a) M. J. James, J. D. Cuthbertson,
P. O’Brien, R. J. K. Taylor, W. P. Unsworth, Angew. Chem. Int. Ed. 2015,
54, 7640–7643. b) C.-X. Zhuo, Y. Zhou, Q. Cheng, L. Huang, S.-L. You,
Angew. Chem. Int. Ed. 2015, 54, 14146–14149. c) V. Magné, F.
Blanchard, A. Marinetti, A. Voituriez, X. Guinchard, Adv. Synth. Catal.
2016, 358, 3355–3361. d) J. T. R. Liddon, A. K. Clarke, R. J. K. Taylor,
W. P. Unsworth, Org. Lett. 2016, 28–31. e) J. T. R. Liddon, M. J. James,
A. K. Clarke, P. O. Brien, R. J. K. Taylor, W. P. Unsworth, Chem. - a Eur.
J. 2016, 8777–8780. f) A. K. Clarke, M. J. James, P. O. Brien, R. J. K.
Taylor, W. P. Unsworth, Angew. Chem. Int. Ed. 2016, 13798–13802. g)
Q.-F. Wu, C. Zheng, C.-X. Zhuo, S.-L. You, Chem. Sci. 2016, 7, 4453–
4459. h) Q.-F. Wu, C. Zheng, C.-X. Zhuo, S.-L. You, Chem. Sci. 2016, 7,
4453–4459. i) R.-D. Gao, Q.-L. Xu, L.-X. Dai, S.-L. You, Org. Biomol.
Chem. 2016, 8044–8046. j) V. Magné, A. Marinetti, V. Gandon, A.
Voituriez, X. Guinchard, Adv. Synth. Catal. 2017, 359, 4036–4042. k) J.
T. R. Liddon, J. A. Rossi-ashton, R. J. K. Taylor, W. P. Unsworth, Org.
Lett. 2018, 20, 3349–3353.
Scheme 4: Proposed mechanism for phosphine-catalysed alkyne
hydroarylation.[26]
In summary, we have developed a phosphine catalyzed “anti-
Michael addition” on alkynes to form the spiroindolines and
spiroindolenines in batch as well as continuous-flow
heterogeneous conditions. Over 28 examples of structurally and
functionally diverse products were successfully synthesized. This
nucleophilic catalysis enables a wide scope of six- and five-
membered spiroindolenines as well as ipso-cyclized products with
yields ranging from 56% to 98%. Moreover, triphenylphosphine
catalysed nucleophilic activation of alkynes allows us to form the
exo-product regioselectively. This new activation method should
enable the mild synthesis of these biologically relevant molecules
in a more sustainable manner.
[3]
a) C.-T. Liu, Q.-W. Wang, C.-H. Wang, J. Am. Chem. Soc. 1981, 103,
4634–4635. b) P. Siengalewicz, T. Gaich, J. Mulzer, Angew. Chem. 2008,
120, 8290–8296. c) W.-T. Wu, R.-Q. Xu, L. Zhang, S.-L. You, Chem. Sci.
2016, 7, 3427–3431. d) Q. Cheng, Y. Wang, S.-L. You, Angew. Chem.
Int. Ed. 2016, 55, 3496–3499. e) C. Z. Zhu, Y. L. Sun, Y. Wei, M. Shi,
Adv. Synth. Catal. 2017, 359, 1263–1270.
[4]
[5]
[6]
[7]
V. A. Peshkov, O. P. Pereshivko, E. V. Van der Eycken, Adv. Synth. Catal.
2012, 354, 2841–2848.
F. Schröder, U. K. Sharma, M. Mertens, F. Devred, D. P. Debecker, R.
Luque, E. V. Van der Eycken, ACS Catal. 2016, 6, 8156–8161.
Q.-F. Wu, H. He, W.-B. Liu, S.-L. You, J. Am. Chem. Soc. 2010, 132,
11418–11419.
Y. Wang, C. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2017, 56, 15093–
15097.
Acknowledgements
[8]
[9]
K. J. Wu, L. X. Dai, S.-L. You, Org. Lett. 2012, 14, 3772–3775.
a) A. K. Clarke, M. J. James, P. O. Brien, R. J. K. Taylor, W. P. Unsworth,
Angew. Chem. Int. Ed. 2016, 13798–13802. b) Y. Zhou, Z. L. Xia, Q. Gu,
S.-L. You, Org. Lett. 2017, 19, 762–765.
This project has received funding from the European Union’s
Horizon 2020 research and innovation Programme under the
Marie Skłodowska-Curie grant agreement No 721290. This
publication reflects only the author’s view, exempting the
etn.eu/. PR is thankful to Marie–Curie action. GMO acknowledges
VLIR-UOS for financial support of a TEAM project (project code
CU2018TEA458A101) involving Flemish and Cuban institutions
and providing a doctoral scholarship. We acknowledge the
support of “RUDN University Program 5-100”. We are grateful to
Prof. Dr. Wim M. De Borggraeve for valuable suggestions (KU
[10] R. Chandrashekhar, S. P. B. Vemulapalli, B. Sridhar, B. V. Subba Reddy,
Eur. J. Org. Chem. 2018, 2018, 1693–1698.
[11] H. Zuleta-Prada, L. D. Miranda, Tetrahedron Lett. 2009, 50, 5336–5339.
[12] a) P. Fedoseev, E. V. Van der Eycken, Chem. Commun. 2017, 53, 7732–
7735. b) P. D. Fedoseev, G. A. Coppola, G. M. Ojeda, E. V. Van der
Eycken, Chem. Commun. 2018, DOI 10.1039/C8CC01474D.
[13] For selected reports: a) J. L. Methot, W. R. Roush, Adv. Synth. Catal.
2004, 346, 1035–1050. b) B. J. Cowen, S. J. Miller, Chem. Soc. Rev.
2009, 38, 3102–3116. c) Y. C. Fan, O. Kwon, Chem. Commun. 2013, 49,
11588.
This article is protected by copyright. All rights reserved.