17-35%. The final step involving the alkylation of the secondary
amine 9 with benzyl bromide afforded the dyes 10a-c in 79-83%
yield.
Figure 1 displays the UV-vis spectra and the cyclic
voltammograms of reference 2 and merocyanine dye 10a in
Table 1. Optical and Electrochemical Properties of 2 and 10a-c
and Photovoltaic Characteristics of BHJ Solar Cell Devices
Containing a MC Dye:PC61BM Blend
JSC
MC λmax ε (M-1 λmax EHOMO ELUMO wt % VOC (mA
PCE
a
dye (nm)a cm-1
)
(nm)b (eV)c (eV)d PCBM (V) cm-2) FF (%)
2
664
53300 640 -5.98 -4.11
70
70
75
75
75
0.55 0.05 0.31 0.01
0.71 2.28 0.28 0.46
0.74 2.00 0.29 0.43
0.64 3.33 0.31 0.66
0.66 4.83 0.31 1.00
10a 735 128600 783 -5.65 -3.96
10b 738 121800 783 -5.66 -3.98
10c 736
87400 771 -5.48 -3.80
87400 771 -5.48 -3.80
10ce 736
a UV-vis measurements in CH2Cl2. b UV-vis measurements of a thin
film of the blend. c From CV measurements (E1/2ox) in CH2Cl2 calibrated against
ferrocene/ferrocenium couple (Fc/Fc+, -5.15 eV) as internal standard. d ELUMO
) EHOMO - (hc/λmax). e Solar cell with PC71BM as acceptor.
Chromophore 2 exhibits an absorption maximum at 664 nm
with a molar extinction coefficient of 53 300 M-1 cm-1. The
rather low tinctorial strength and the broad absorption band
indicate a more polyene-like character of this dye.23 Notably,
2 shows very low-lying HOMO and LUMO levels at -5.98
and -4.11 eV, respectively. Dyes 10a and 10b with extended
π-systems differ only by the alkyl substituent (Me vs n-Bu)
at the donor unit and show a bathochromic shift of the
absorption maxima of 70 nm compared with that of 2 and
sharp cyanine-like absorption bands with high extinction
coefficients of 121 800-128 600 M-1 cm-1. Their HOMO
levels range at -5.65 eV, and their LUMOs are situated at
energies around -3.96 eV. Replacement of the cyano substitu-
ent R1 at the oxo-pyrrolidino acceptor unit by an ethyl ester
group in compound 10c results in a shift of both HOMO and
LUMO levels by 0.18 eV to higher energies compared to those
of 10a,b, but without any alteration of the absorption features.
The presented dyes were characterized in solution-processed
BHJ solar cell devices with the general structure ITO/PEDOT:
PSS (∼40 nm)/dye:PC61BM (25/75% by weight; ∼ 50 nm)/Al
(120 nm). The details for device fabrication are given in
Supporting Information. The photovoltaic characteristics of the
solar cells are presented in Table 1.
For the device of reference 2, a very low PCE of 0.01%
was observed. This low efficiency arises from the small short-
circuit photocurrent (JSC) of 50 µA cm-2, which is very likely
caused by a lack of driving force for charge-carrier separation
owing to the low LUMO level of -4.11 eV. The latter energy
level is not sufficiently high for electron injection into the
LUMO level of the PCBM acceptor (-4.08 eV, Figure 2).
The introduction of the indolenine donor group in merocyanine
dyes leads to the extension of the π-system and entailed better
matched HOMO levels for the dyes 10a-c. Moreover, these dyes
Figure 1
.
UV-vis absorption spectra (2 × 10-5 M, CH2Cl2) and
cyclic voltammograms (inset, CH2Cl2, calibrated against Fc/Fc+
couple) of 2 (blue line) and 10a (green line).
CH2Cl2. Further data along with those of dyes 10b,c are listed
in Table 1. The HOMO levels were derived from the half-
wave oxidation potentials determined by cyclic voltammetry
(CV), whereas the LUMO energies are calculated by the
equation ELUMO ) EHOMO - (hc/λmax).
All of these dyes possess one oxidation and two reduction
waves, both processes being fully reversible (Figure 1).
(7) (a) Mayerho¨ffer, U.; Deing, K.; Gruss, K.; Braunschweig, H.;
Meerholz, K.; Wu¨rthner, F. Angew. Chem., Int. Ed. 2009, 48, 8776. (b)
Bagnis, D.; Beverina, L.; Huang, H.; Silvestri, F.; Yao, Y.; Yan, H.; Pagani,
G. A.; Marks, T. J.; Faccetti, A. J. Am. Chem. Soc. 2010, 132, 4074.
(8) (a) Bouit, P.-A.; Rauh, D.; Neugebauer, S.; Delgado, J. L.; Di Piazza,
E.; Rigaut, S.; Maury, O.; Andraud, C.; Dyakonov, V.; Martin, N. Org.
Lett. 2009, 11, 4806. (b) Fan, B.; de Castro, A.; Chu, B. T.-T.; Heier, J.;
Opris, D.; Hany, R.; Nu¨esch, F. J. Mater. Chem. 2010, 20, 2952.
(9) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali,
J. J. Mater. Chem. 2009, 19, 2298.
(10) (a) Tamayo, A. B.; Dang, X.-D.; Walker, B.; Seo, J.; Kent, T.;
Nguyen, T.-Q. Appl. Phys. Lett. 2009, 94, 103301. (b) Walker, B.; Tamayo,
A. B.; Dang, X.-D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.;
Nguyen, T.-Q. AdV. Funct. Mater. 2009, 19, 3063.
(11) Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010,
12, 660.
(12) Lloyd, M. T.; Mayer, A. C.; Subramanian, S.; Mourey, D. A.;
Herman, D. J.; Bapat, A. V.; Anthony, J. E.; Malliaras, G. G. J. Am. Chem.
Soc. 2007, 129, 9144.
(13) Winzenberg, K. N.; Kemppinen, P.; Fanchini, G.; Bown, M.; Collis,
G. E.; Forsyth, C. M.; Hegedus, K.; Singh, T. B.; Watkins, S. E. Chem.
Mater. 2009, 21, 5701.
(14) Thompson, B. C.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2008,
47, 58.
(15) For another approach to utilize a broad spectral range, Matile and
co-workers have introduced the concept of oriented multicolored antiparallel
redox gradients (OMARG) in supramolecular heterojunctions (SHJ).
Kishore, R. S. K.; Kel, O.; Banerji, N.; Emery, D.; Bollot, G.; Mareda, J.;
Gomez-Casado, A.; Jonkheijm, P.; Huskens, J.; Maroni, P.; Borkovec, M.;
Vauthey, E.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2009, 131, 11106.
(16) (a) Koeppe, R.; Hoeglinger, D.; Troshin, P. A.; Lyubovskaya, R. N.;
Razumov, V. F.; Sariciftci, N. S. ChemSusChem 2009, 2, 309. (b) Meiss,
J.; Leo, K.; Riede, M. K.; Uhrich, C.; Gnehr, W.-M.; Sonntag, S.; Pfeiffer,
M. Appl. Phys. Lett. 2009, 95, 213306.
(18) Matsumoto, H.; Yono, S.; Imai, H.; Urawa, S.; Tada, S.; Kasukabe,
S. DE3716840A1, 1987.
(19) Mittelbach, M.; Junek, H. Liebigs Ann. Chem. 1986, 3, 533.
(20) Carboni, R. A.; Coffman, D. D.; Howard, E. G. J. Am. Chem. Soc.
1958, 80, 2838.
(17) Related chromophores have been investigated for nonlinear optics:
(a) Jang, S. H.; Luo, J. D.; Tucker, N. M.; Leclercq, A.; Zojer, E.; Haller,
M. A.; Kim, T. D.; Kang, J. W.; Firestone, K.; Bale, D.; Lao, D.; Benedict,
J. B.; Cohen, D.; Kaminsky, W.; Kahr, B.; Bredas, J. L.; Reid, P.; Dalton,
L. R.; Jen, A. K. Y. Chem. Mater. 2006, 18, 2982. (b) Willets, K. A.;
Nishimura, S. Y.; Schuck, P. J.; Twieg, R. J.; Moerner, W. E. Acc. Chem.
Res. 2005, 38, 549.
(21) Wu¨rthner, F.; Sens, R.; Etzbach, K.-H.; Seybold, G. Angew. Chem.,
Int. Ed. 1999, 38, 1649.
(22) Hubschwerlen, C.; Fleury, J.-P. Tetrahedron 1977, 33, 761.
(23) Wu¨rthner, F.; Wortmann, R.; Matschiner, R.; Lukaszuk, K.;
Meerholz, K.; DeNardin, Y.; Bittner, R.; Bra¨uchle, C.; Sens, R. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2765.
3668
Org. Lett., Vol. 12, No. 16, 2010