H. Andersson et al. / Tetrahedron Letters 51 (2010) 4218–4220
4219
NH2
OBn
N
R = H, R' = Ph (83%) 7a
R = H, R' = 1-naphthyl (78%) 7f
sat. NH3
R = H, R' = 4-ClC6H4(80%) 7g
R
TfO
R'
MeOH
R
N
R'
R = H, R' = 2-thienyl (81%) 7d
R = Ph, R', = 4-OMeC6H4 (75%) 7e
TfO
7a,d,e,f,g
5a,d,e,f,g
Scheme 1. Synthesis of 4-aminopyridinium salts.32
Table 1
Synthesis of 4-pyridones31
O
OBn
N
OTf
5a-5e
OBn
OBn
R'MgCl, THF, rt
then NaHCO3
Ac2O, MW
120 ºC, 4 min
NaOH/THF
MeOTf
Tol; 0-20ºC
MW 100ºC
3 min
R
N
R'
R
R'
R
N
R'
R
N
O
4a-4e
6a-6e
3
Entry
R
R0
Yield (%) 4
Yielda (%) 6
1
2
3
4
5
H
H
H
H
Ph
4-Cl-C6H4
N-Me-indole
2-thienyl
4-OMe-C6H4
69
73
72
69
76
81
74
79
82
70
Ph
Reaction conditions: pyridine N-oxide (1 equiv) in THF, Grignard reagent (1.2 equiv) at rt, pH 6–8, Ac2O (10 equiv), 4 min at 120 °C.
a
Isolated yield.
O
N
References and notes
O
1. Abass, M. Heterocycles 2005, 65, 901–965.
2. Henry, G. D. Tetrahedron 2004, 60, 6043–6061.
OBn
N
N
N
N
H
N
H
3. Fang, A. G.; Mello, J. V.; Finney, N. S. Org. Lett. 2003, 5, 967–970.
4. Andersson, H.; Almqvist, F.; Olsson, R. Org. Lett. 2007, 9, 1335–1337.
5. Andersson, H.; Bancheline, T.; Das, S.; Olsson, R.; Almqvist, F. Chem. Commun.
2010, 46, 3384–3386.
6. Andersson, H.; Gustafsson, M.; Olsson, R.; Almqvist, F. Tetrahedron Lett. 2008,
49, 6901–6903.
MW, 100 ºC,
4 min
MW, 100 ºC,
4 min
Ph
N
Ph
Ph
TfO
TfO
9, 60%
TfO
8, 50%
5e
7. Buffat, M. G. P. Tetrahedron 2004, 60, 1701–1729.
8. Laschat, S.; Dickner, T. Synthesis 2000, 1781–1813.
9. Andersson, H.; Gustafsson, M.; Olsson, R.; Almqvist, F. Angew. Chem., Int. Ed.
2009, 48, 3288–3291.
Scheme 2.
10. Wang, X.; Kauppi, A. M.; Olsson, R.; Almqvist, F. Eur. J. Org. Chem. 2003, 4586–
4592.
The 2-substituted pyridines 4 were purified simply by a catch and
release protocol using a solid-supported ion exchange resin and
they were used without further purification in the remaining steps.
These included N-methylation with methyl triflate to give the acti-
vated pyridinium salts 5 followed by a microwave-assisted deben-
zylation. The target compounds 6 and 7 were obtained in good
overall yields (Table 1 and Scheme 1).
Although 4-aminopyridinium salts 7 are easily accessible via
this new method, more diverse 4-aminopyridinium salts would
be obtained if amines other than ammonia could be used in the
debenzylation step. Indeed, by using either piperidine or morpho-
line, 4-aminopyridiniums 8 and 9 were synthesized in 50% and 60%
yields, respectively (Scheme 2).
In summary, we have developed a practical method for the syn-
thesis of a diverse set of substituted 4-pyridones as well as 4-amin-
opyridinium salts. Deprotection of the methyl pyridinium triflates
using NaOH in THF at room temperature generated substituted 4-
pyridones. Moreover, by exchanging NaOH for ammonia, or other
amines, followed by microwave heating, resulted in substituted
4-aminopyridinium salts. In addition, a new one-pot synthesis of
substituted pyridines was developed, which together with the
deprotection strategy described above, constitutes a platform for
library synthesis of substituted 4-pyridones and 4-aminopyridini-
um salts.
11. Vieth, M.; Siegel, M. G.; Higgs, R. E.; Watson, I. A.; Robertson, D. H.; Savin, K. A.;
Durst, G. L.; Hipskind, P. A. J. Med. Chem. 2004, 47, 224–232.
12. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893–930.
13. Andersson, H.; Saint-Luce, B. T.; Olsson, R.; Almqvist, F. Org. Lett. 2010, 12, 284–
286.
14. Clatworthy, A. E.; Pierson, E.; Hung, D. T. Nat. Chem. Biol. 2007, 3, 541–548.
15. Kitagawa, H.; Kumura, K.; Takahata, S.; Iida, M.; Atsumi, K. Bioorg. Med. Chem.
2007, 15, 1106–1116.
16. Kitagawa, H.; Ozawa, T.; Takahata, S.; Iida, M.; Saito, J.; Yamada, M. J. Med.
Chem. 2007, 50, 4710–4720.
17. Shoop, W. L.; Xiong, Y.; Wiltsie, J.; Woods, A.; Guo, J.; Pivnichny, J. V.; Felcetto,
T.; Michael, B. F.; Bansal, A.; Cummings, R. T.; Cunningham, B. R.; Friedlander,
A. M.; Douglas, C. M.; Patel, S. B.; Wisniewski, D.; Scapin, G.; Salowe, S. P.;
Zaller, D. M.; Chapman, K. T.; Scolnick, E. M.; Schmatz, D. M.; Bartizal, K.;
MacCoss, M.; Hermes, J. D. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7958–7963.
18. Pinkner, J. S.; Remaut, H.; Buelens, F.; Miller, E.; Aberg, V.; Pemberton, N.;
Hedenstrom, M.; Larsson, A.; Seed, P.; Waksman, G.; Hultgren, S. J.; Almqvist, F.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17897–17902.
19. Cegelski, L.; Pinkner, J. S.; Hammer, N. D.; Hung, C. S.; Chorell, E.; Åberg, V.;
Garofalo, C. K.; Walker, J. N.; Seed, P. C.; Almqvist, F. Nat. Chem. Biol. 2009, 5,
913–919.
20. Abeywickrama, C.; Rotenberg, S. A.; Baker, A. D. Bioorg. Med. Chem. 2006, 14,
7796–7803.
21. Galanakis, D.; Ganellin, C. R.; Malik, S.; Dunn, P. M. J. Med. Chem. 1996, 39,
3592–3595.
22. Ng, C. K. L.; Singhal, V.; Widmer, F.; Wright, L. C.; Sorrell, T. C.; Jolliffe, K. A.
Bioorg. Med. Chem. 2007, 15, 3422–3429.
23. Weiss, M. J.; Wong, J. R.; Ha, C. S.; Bleday, R.; Salem, R. R.; Steele, G. D., Jr.; Chen,
L. B. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5444–5448.
24. Miles, M. L.; Harris, T. M.; Hauser, C. R. J. Org. Chem. 1965, 30, 1007–1011.
25. Work, S. D.; Hauser, C. R. J. Org. Chem. 1963, 28, 725–730.