plane with 10◦, but in the opposite sense.13 This arrangement
allows lone electron pair of nitrogen to be in conjugation with
the amine substituent (cyclohexyl) rather the p-conjugated imine
functionality in symmetrical isomer. By rotation of triphenylamine
groups around cyclohexane-N simple linkages, the conjugation
of lone electron pair of imine nitrogen with triphenylamine
group is possible having an effect on electronic absorption
maximum (bathocromic shifting). Moreover, this rotation allows
apparition of a transanular electronic interaction between the
cofacial benzene rings of triphenylamine. The conjugation length
increased also via the through space interactions, similar with [2,2]
paracyclophane.
Gawronski et al.2g have stated that rhombimine 3a is flattened
around atom N that leads to puckering of the molecule about
the imine fragments and is quite unstable in solution, making its
crystallization and study difficult. In our opinion, macrocycles 3
are enough stable to be purified but in solution they changed their
3-D structure toward a more favorable conformation.
Reduction of 3a with NaBH4 in a methanol–THF mixture gave
rhombamine 4a in almost quantitative yield. The NMR spectrum
showed the disappearance of the imine proton signals (7.9–8.2
ppm) and the appearance of new signals at 3.5–3.9 ppm (–CH2–)
and 2.3 ppm (–NH–). Rhombamine 4a shows absorptions only
at 250 and 310 nm, the absorption associated to imine group
being absent. Furthermore, the UV and1H-NMR spectra were
unchanged in time.
Acknowledgements
We thank Dr V. Barboiu for NMR spectra and helpful comments.
This work was supported by CNCSIS –UEFISCSU, project
number 649/2009 PNII – IDEI 993/2008
References
1 For reviews see: (a) N. E. Borisova, M. D. Reshetova and Y. A.
Ustynyuk, Chem. Rev., 2007, 107, 46–79; (b) M. J. MacLachlan, Pure
Appl. Chem., 2006, 78, 873–878.
2 (a) J. Gawronski, H. Kolbon, M. Kwit and A. Katrusiak, J. Org. Chem.,
2000, 65, 5768–5773; (b) M. Kwit and J. Gawronski, Tetrahedron:
Asymmetry, 2003, 14, 1303–1308; (c) J. Gawronski, M. Brzostowska,
M. Kwit, A. Plutecka and U. Rychlewska, J. Org. Chem., 2005, 70,
10147–10150; (d) M. Kwit, P. Skowronek, H. Kolbon and J. Gawronski,
Chirality, 2005, 17, S93–S100; (e) J. Gawronski, K. Gawronska, J.
Grajewski, M. Kwit, A. Plutecka and U. Rychlewska, Chem.–Eur. J.,
2006, 12, 1807–1817; (f) M. Kaik and M. Gawronski, Org. Lett., 2006,
8, 2921–2924; (g) J. Gawronski, M. Kwit, J. Grajewski, J. Gajewy and
A. Dlugokinska, Tetrahedron: Asymmetry, 2007, 18, 2632–2637; (h) P.
Skowronek and J. Gawronski, Org. Lett., 2008, 10, 4755–4758.
3 (a) M. Chadim, M. Budesinsky, J. Hodacova, J. Zavada and P. C. Junk,
Tetrahedron: Asymmetry, 2001, 12, 127–133; (b) J. Hodackova and M.
Budesinsky, Org. Lett., 2007, 9, 5641–5643.
4 (a) N. Kuhnert and A. M. Lopez-Periago, Tetrahedron Lett., 2002, 43,
3329–3332; (b) N. Kuhnert, C. Strassnig and A. M. Lopez-Periago,
Tetrahedron: Asymmetry, 2002, 13, 123–128; (c) N. Kuhnert, G. M.
Rossignolo and A. Lopez-Periago, Org. Biomol. Chem., 2003, 1, 1157–
1170; (d) N. Kuhnert, N. Burzlaff, C. Patel and A. Lopez-Periago, Org.
Biomol. Chem., 2005, 3, 1911–1921; (e) N. Kuhnert, A. Lopez-Periago
and G. M. Rossignolo, Org. Biomol. Chem., 2005, 3, 524–537; (f) N.
Kuhnert, C. Patel and F. Jami, Tetrahedron Lett., 2005, 46, 7575–7579.
5 (a) J. Gao and A. E. Martell, Org. Biomol. Chem., 2003, 1, 2795–2800;
(b) J. Gao and A. E. Martell, Org. Biomol. Chem., 2003, 1, 2801–2806;
(c) J. Gao, J. H. Reibenspies, R. A. Zingaro, F. R. Wooley, A. E. Martell
and A. Clearfield, Inorg. Chem., 2005, 44, 232–241.
Conclusions
In this study, three imine macrocycles having rhomb shape
were synthesized by [2+2] cyclocondensation of (R,R)-1,2-
diaminocyclohexane with 4,4¢ bis formyltripenylamine, 4,4¢ bis-
formyl 4¢¢-bromo triphenylamine, and 4,4¢,4¢¢-trisformyl tripheny-
lamine. They were characterized by a combination of ESI-MS, 1H-
NMR, FTIR, UV, and thermal methods. Imine linkages are in E
configuration and all-syn conformation, concluding all macrocy-
cles in this conformation have low energy and highly symmetrical
structure. In solution, with rotation of a triphenylamine group
around cyclohexane–nitrogen bonds, macrocycle may interconvert
to a more stable conformational isomer with enhanced n-p*
conjugation between triphenylamine and imine linkages and p
stacking interactions between triphenylamine groups. In solution,
the rotation is monitored by changes in the NMR and UV
spectra. All three imine macrocycles are functional compounds
and they could be used in chemical or electrochemical oxidative
polymerization (3a), metal-catalyzed polycondensation of Suzuki,
Heck or Stille type (3b) and Schiff base polycondensation with
diamines (3c) to obtain polyrhombimines.
6 S. Srimurugan, B. Viswanathan, T. K. Varadarajan and B. Varghese,
Org. Biomol. Chem., 2006, 4, 3044–3047.
7 (a) B. N. Boden, J. K. H. Hui and M. J. MacLachlan, J. Org. Chem.,
2008, 73, 8069–8072; (b) A. J. Gallant, J. K. H. Hui, F. E. Zahariev,
Y. A. Wang and M. J. MacLachlan, J. Org. Chem., 2005, 70, 7936–7946;
(c) C. Ma, A. Lo, A. Abdolmaleki and M. J. MacLachlan, Org. Lett.,
2004, 6, 3841–3844; (d) A. J. Gallant and M. J. MacLachlan, Angew.
Chem., Int. Ed., 2003, 42, 5307–5310.
8 D. Zhao and J. S. Moore, Chem. Commun., 2003, 807–818and references
therein.
9 P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. L. Wietor, J. K. M.
Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–3711.
10 B. Icli, N. Christinat, J. Tonnemann, C. Schuttler, R. Scopelliti and
K. Severin, J. Am. Chem. Soc., 2009, 131, 3154–3155and references
therein.
11 (a) X. Liu, Y. Liu, G. Li and R. Warmuth, Angew. Chem., Int. Ed.,
2006, 45, 901–906; (b) Y. Liu, X. Liu and R. Warmuth, Chem.–Eur. J.,
2007, 13, 8953–8959; (c) D. Xu and R. Warmuth, J. Am. Chem. Soc.,
2008, 130, 7520–7521.
12 K. Tanaka, S. Fukuoka, H. Miyanishi and H. Takahashi, Tetrahedron
Lett., 2010, 51, 2693.
13 H. B. Bu¨rgi and J. D. Dunitz, J. Chem. Soc. D, 1969, 472–473.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3638–3643 | 3643
©