A R T I C L E S
Tanaka et al.
4.2.1.5. (S)-Methyl o-Methylphenyl Sulfoxide (Table 2,
Run 4). Colorless oil. Yield 86% (96% ee). [R]2D5 -211.8 (c 2.7,
acetone). Lit.23 [53% ee, (S)-isomer; [R]D20 -122 (c 2.0, acetone)].
1H NMR (CDCl3, 400 MHz): δ 7.96 (dd, J ) 1.5, 7.8 Hz, 1H),
7.45 (ddd, J ) 0.7, 7.6, 7.8 Hz, 1H), 7.39 (ddd, J ) 1.5, 7.3, 7.6
Hz, 1H) 7.21 (dd, J ) 0.7, 7.3 Hz, 1H), 2.69 (s, 3H), 2.38 (s, 3H).
13C NMR (CDCl3, 100 MHz): δ 143.8, 133.8, 130.5, 127.3, 122.9,
42.1, 18.2 ppm. HPLC: tR (R) ) 103.7 min, tR (S) ) 109.8 min
(DAICEL CHIRALPAC IC; flow rate, 0.5 mL/min; hexane/i-PrOH
) 90/10).
NMR (CDCl3, 400 MHz): δ 7.35-7.24 (m, 5H), 3.57 (d, J ) 2.2
Hz, 1H), 3.04 (dq, J ) 2.2, 5.1 Hz, 1H), 1.45 (d, J ) 5.1 Hz, 3H).
13C NMR (100 MHz): δ 137.6, 128.3, 127.9, 125.4, 59.5, 59.0,
17.9 ppm. GLC: tR (1S,2S) ) 23.8 min, tR (1R,2R) ) 25.9 min
[InertCap CHIRAMIX: 70 °C (5.5 min) to 110 °C (46 °C/min)
then 110 to 133 °C (1 °C/min)].
4.2.2.2. trans-1-(2-Naphthyl)-1,2-epoxypropane (Table 4,
Run 1). White solid. Yield 75% (92% ee). [R]2D5 -42.4 (c
1
0.90,CHCl3) H NMR (CDCl3, 400 MHz): δ 7.83-7.76 (m, 4H),
7.51-7.30 (m, 3H), 3.74 (d, J ) 2.0 Hz, 1H), 3.14 (dq, J ) 2.0,
5.3 Hz,1H), 1.50 (d, J ) 5.3 Hz, 3H). 13C NMR (CDCl3, 100 MHz):
δ 135.2, 133.2, 133.2, 128.2, 127.7, 126.3, 125.9, 125.0, 123.0,
59.8, 59.1, 12.9 ppm. HPLC: tR (minor) ) 16.5 min, tR (major) )
18.2 min (DAICEL CHIRALCEL OB-H; flow rate, 1.0 mL/min;
hexane/i-PrOH ) 99.9/0.1; at 30 °C).
4.2.1.6. (S)-Mesityl Methyl Sulfoxide (Table 2, Run 5). Yellow
oil. 18% (72% ee). [R]D25 -179.2 (c 1.0, CHCl3). Lit.24 [98% ee,
(S)-isomer; [R]D -241 (c 1.0, CHCl3)]. 1H NMR (CDCl3, 400
MHz): δ 6.85 (s, 3H), 2.84 (s, 3H), 2.50 (s, 6H), 2.24 (s, 3H). 13
C
NMR (CDCl3, 100 MHz): δ 141.3, 137.3, 130.7, 38.5, 20.8, 18.0
ppm. HPLC: tR (S) ) 10.0 min, tR (R) ) 11.1 min (DAICEL
CHIRALCEL OJ-H; flow rate, 1.0 mL/min; hexane/i-PrOH ) 95/
5).
4.2.2.3. trans-1-(m-Methylphenyl)-1,2-epoxypropane (Table
4, Run 2). Colorless oil. Yield 67% (90% ee). [R]2D5 -44.6 (c 0.35,
CHCl3). 1H NMR (CDCl3, 400 MHz): δ 7.26-7.06 (m, 4H), 3.54
(d, J ) 2.2 Hz, 1H), 3.1-3.0 (dq, J ) 5.1, 2.2 Hz, 1H), 2.34 (s,
3H), 1.45 (d, J ) 5.1 Hz, 3H). 13C NMR (100 MHz): δ 138.0,
137.5, 128.6, 128.2, 125.9, 122.6, 59.6, 58.9, 21.5, 18.0 ppm. HPLC:
tR (minor) ) 8.8 min, tR (major) ) 13.3 min (DAICEL CHIRAL-
PAC AS-H; flow rate, 0.5 mL/min; hexane/i-PrOH ) 95/5).
4.2.2.4. trans-1-(p-Methylphenyl)-1,2-epoxypropane (Table
4, Run 5). Colorless oil. Yield 58% (76% ee). [R]2D4 -30.3 (c 0.59,
CHCl3). 1H NMR (CDCl3, 400 MHz): δ 7.26-7.06 (m, 4H), 3.54
(d, J ) 2.0 Hz, 1H), 3.03 (dq, J ) 5.1, 2.0 Hz, 1H), 2.34 (s, 3H),
1.44 (d, J ) 5.1 Hz, 3H). 13C NMR (100 MHz): δ 137.6, 134.5,
129.0, 125.4, 59.6, 58.9, 21.3, 18.0 ppm. HPLC: tR (minor) ) 8.6
min, tR (major) ) 10.3 min (DAICEL CHIRALPAC AS-H; flow
rate, 0.5 mL/min; hexane/i-PrOH ) 90/10).
4.2.1.7. (S)-Benzyl Methyl Sulfoxide (Table 2, Run 6). Color-
less solid. Yield 26% (75% ee). [R]2D4 +79.9 (c 0.56, EtOH). Lit.22
[87% ee, (S)-isomer; [R]2D4 +97.9 (c 0.25, EtOH)]. 1H NMR (CDCl3,
400 MHz): δ 7.41-7.28 (m, 5H), 4.07 (d, J ) 12.9 Hz, 1H), 3.93
(d, J ) 12.9 Hz, 1H), 2.46 (s, 3H). 13C NMR (CDCl3, 100 MHz):
δ 129.9, 129.6, 128.9, 128.4, 60.4, 37.3 ppm. HPLC: tR (S) ) 20.1
min, tR (R) ) 25.1 min (DAICEL CHIRALCEL OB-H; flow rate,
0.5 mL/min; hexane/i-PrOH ) 80/20).
4.2.1.8. (1S,2S)-2-Phenyl-1,3-dithiane 1-Oxide (Table 2,
Run 7). Colorless solid. Yield 57% (98% ee). [R]2D4 +122.4 (c 0.86,
CHCl3). Lit.25 [99% ee, (1S,2S)-isomer; [R]2D4 +106.48 (c 0.88,
CHCl3)]. 1H NMR (400 MHz): δ 7.43-7.36 (m, 5H), 4.59 (s, 1H),
3.60-3.55 (m, 1H), 2.90 (ddd, J ) 2.7, 12.4, 12.4 Hz, 1H), 2.79
(ddd, J ) 2.9, 13.2, 13.2 Hz, 1H), 2.69 (dddd, J ) 1.2, 2.4, 13.2,
13.2 Hz, 1H), 2.58-2.51 (m, 1H), 2.44-2.32 (m, 1H). 13C NMR
(100 MHz): δ 133.0, 129.1, 128.8, 128.4, 69.6, 54.7, 31.4, 29.5
ppm. HPLC: tR (1R,2R) ) 15.2 min, tR (1S,2S) ) 25.0 min
(DAICEL CHIRALCEL AD-H; flow rate, 0.5 mL/min; hexane/i-
PrOH ) 75/25).
4.2.1.9. (1S,2S)-2-tert-Butyl-1,3-dithiane 1-Oxide (Table 2,
Run 8). Colorless solid. Yield 98% (91% ee). [R]2D5 -51.5 (c 0.87,
EtOH). Lit.26 [35% ee, (1S,2S)-isomer]; [R]D -13 (EtOH). 1H NMR
(CDCl3, 400 MHz): δ 3.52 (s, 1H), 3.39 (ddd, J ) 3.7, 3.7, 12.7
Hz, 1H), 2.70 (ddd, J ) 2.9, 12.7, 13.0 Hz, 1H), 2.63 (pseudodd,
J ) 2.9, 8.54 Hz, 2H), 2.45-2.38 (m, 1H), 2.32-2.18 (m, 1H),
1.25 (s, 9H). 13C NMR (CDCl3, 100 MHz): δ 77.2, 55.7, 36.3, 30.7,
30.3, 28.8 ppm. HPLC: tR (1R,2R) ) 18.1 min, tR (1S,2S) ) 24.6
min (DAICEL CHIRALCEL OD-H; flow rate, 0.5 mL/min; hexane/
i-PrOH ) 90/10).
4.2.2. Typical procedure for Asymmetric Aerobic Epoxida-
tion Using 3 as the Catalyst under Oxygen Atmosphere. Complex
3 (24.8 mg, 25 µmol) and chlorobenzene (2.5 mL) were placed in
a Schlenk tube, which was previously purged with oxygen. Alkene
(0.5 mmol) was added to the solution and stirred for 36 h under
oxygen and irradiation in the closed tube. The mixture was
chromatographed on an NH-silica gel column with pentane and
Et2O (1:0 to 20:1) to give the corresponding epoxide. The
enantiomeric excess of the epoxide was determined by GLC or
HPLC analysis using a chiral stationary phase.
4.2.2.5. (2R,3R)-2-Phenyl-2,3-epoxybutane (Table 4, Run
6). Colorless oil. Yield 55% (88% ee). [R]2D5 +14.8 (c 0.88, CHCl3).
Lit.28 [99% ee, (2S,3S)-isomer; [R]D -16.0 (c 1.0, CHCl3)]. H
NMR (CDCl3, 400 MHz): δ 7.36-7.24 (m, 5H), 2.95 (q, J ) 5.4
Hz, 1H), 1.66 (s, 3 H), 1.43 (d, J ) 5.4 Hz, 3H). 13C NMR (100
MHz): δ 143.0, 128.3, 127.1, 125.0, 62.3, 60.3, 17.4, 14.4 ppm.
HPLC: tR (1R,2R) ) 16.5 min, tR (1S,2S) ) 20.0 min (DAICEL
CHIRALPAC AS-H; flow rate, 0.5 mL/min; hexane).
20
1
4.2.2.6. (1S,2R)-cis-ꢀ-Methylstyrene Oxide (Table 4, Run
7). Colorless oil. Yield 34% (90% ee). [R]2D5 +43.8 (c 0.15, CHCl3).
Lit.29 [>99% ee, (1S,2R)-isomer; [R]D20 +47.5 (c 1.17, CHCl3)]. 1H
NMR (CDCl3, 400 MHz): δ 7.37-7.25 (m, 5H), 4.06 (d, J ) 4.4
Hz, 1H), 3.34 (dq, J ) 4.4, 5.4 Hz, 1H), 1.08 (d, J ) 5.4 Hz, 3H).
13C NMR (100 MHz): δ 135.3, 127.8, 127.3, 126.4, 57.5, 55.2,
12.7 ppm. GLC: tR (1S,2R) ) 24.1 min, tR (1R,2S) ) 25.6 min
[InertCap CHIRAMIX: 70 °C (5.5 min) to 110 °C (46 °C/min)
then 110 to 133 °C (1 °C/min)].
4.3. Confirmation of the Effect of Water on Asymmetric
Aerobic Oxidation: Asymmetric Epoxidation of trans-ꢀ-Methyl-
styrene Using Dried or Wet 3 as the Catalyst. Epoxidation with
dried 3 as the catalyst: Complex 3 (4.9 mg, 5.0 µmol) was placed
in a Schlenk tube. The Schlenk tube was heated at 380 °C with
a heat gun for 5 min in vacuo followed by cooling at room
temperature and purging with O2 gas. After that, chlorobenzene
(0.5 mL), trans-ꢀ-methylstyrene (13 µL, 0.1 mmol), and a small
1
amount of phenanthrene as an internal standard for H NMR
4.2.2.1. trans-1-Phenyl-1,2-epoxypropane (Table 3, Run 8).
Colorless oil. Yield 58% (88% ee). [R]2D4 -41.7 (c 0.88, CHCl3).
Lit.27 [95.7% ee, (1S,2S)-isomer; [R]D25 -46.9 (c 0.88, CHCl3)]. 1H
analysis were added to the Schlenk tube. An aliquot (40 µL) of
this solution was taken out of the Schlenk tube as the zero point.
1
The aliquot was diluted by CDCl3 and submitted to H NMR
analysis. The reaction mixture was stirred at room temperature
for 36 h under visible light irradiation in the closed tube. A
small quantity of the samples were taken out for 1H NMR
analysis and GLC analysis with InertCap CHIRAMIX [70 °C
(23) Imamoto, T.; Koto, H. Chem. Lett. 1986, 6, 967–968.
(24) Garc´ıa Ruano, J. L.; Alemparte, C.; Aranda, M. T.; Zarzuelo, M. M.
Org. Lett. 2003, 5, 75–78.
(25) Tanaka, T.; Saito, B.; Katsuki, T. Tetrahedron Lett. 2002, 43, 3259–
3262.
(26) Auret, B. J.; Boyd, D. R.; Cassidy, E. S.; Turley, F.; Drake, A. F.;
Mason, S. F. J. Chem. Soc., Chem. Commun. 1983, 282–283.
(27) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem.
Soc. 1997, 119, 11224–11235.
(28) Capriati, V.; Florio, A.; Luisi, R.; Nuzzo, I. J. Org. Chem. 2004, 69,
3330–3335.
(29) Witkop, B.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 197–201.
9
12040 J. AM. CHEM. SOC. VOL. 132, NO. 34, 2010