310 Letters in Organic Chemistry, 2010, Vol. 7, No. 4
Durgadas et al.
[1,5] dipolar
via
6ꢁ-electrocyclic
rearrangements
or
reaction. The reaction does not require the use of expensive
catalyst or reagent and can be carried out in an open vessel.
The methodology was used to synthesize
dihydroquinoline-based compound derived from anti-
inflammatory agent nimesulide. Due to its operational
simplicity and easy availability of required raw materials we
expect that the present methodology would find wide usage
in the preparation of dihydroquinoline-based library of small
molecules.
electrocyclizations. Part 3. Heterocycles 1995, 41, 1251.
Walter, H. A Novel Approach to 2,2-Disubstituted 1,2-Dihydro-4-
phenylquinolines. Helv. Chim. Acta 1994, 77, 608.
Manske, R.H.F.; Kulka, M. The skraup synthesis of quinolines.
Org. React. 1953, 7, 59.
Vaughan, W.R. 2,4-Dimethylquinoline. Org. Synth. 1955, 3, 329.
Lugovik, B.A.; Yudin, L.G.; Kost, A.N. Zh. Prikl. Khim. (Sankt-
Peterburg) 1965, 38, 216.
[14]
[15]
a novel
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
Layer, R.W. Synthesis of 1,3,5-trialkylbenzenes from anils of
methyl alkyl ketones. J. Org. Chem. 1981, 46, 4552.
Shimizu, S.; Nagaoka, T. Production of high-quality 2,2,4-
trimethyl-1,2-dihydroquinoline polymer. 1981, JP 56014516.
Kojima, T.; Okino, E.; Hatanaka, K.; Ishimoto, R. Preparation of
2,2,4-trimethyl-1,2-dihydroquinoline. 1980, JP 55040661.
Kojima, T.; Yamamoto, E.; Nagasaki, H. Preparation of 2,2,4-
trimethyl-1,2-dihydroquinoline. 1982, JP 57011967.
Zharikov, L.K.; Tikhonova, G.G.; Trofimov, V.N. Otkrytoe
Aktsionernoe Obshchestvo ‘‘Khimprom’’, 2000, RU 2,157,387.
Grzywa, E.; Tarnowski, J.; Szteke, B.; Zoledziowski, W.;
Majewski, J. Instytut Przemyslu Organicznego, 1982, PL 114622.
Theoclitou, M.-E.; Robinson, L.A. Novel facile synthesis of 2,2,4
substituted 1,2-dihydroquinolines via a modified Skraup reaction.
Tetrahedron Lett. 2002, 43, 3907.
ACKNOWLEDGEMENT
The author (S.D.) thanks management of MSN Pharma-
chem for constant encouragement.
REFERENCES
[1]
[2]
[3]
(a) Pearce, B.C.; Wright, J.J. Antihyperlipidemic/antioxidant
dihydroquinolines. 1995, US 5411969; (b) Jones, T.K.; Winn, D.T.;
Zhi, L.; Hamann, L.G.; Tegley, C.M.; Pooley, C.L.F. Steroid
receptor modulator compounds and methods. 1997, US 5688808.
Coughlan, M.J.; Elmore, S.W.; Kort, M.E.; Kym, P.R.; Moore,
J.L.; Pratt, J.K.; Wang, A.X.; Edwards, J.P.; Jones, T.K.
Glucocorticoid-selective anti-inflammatory agents. 1999, WO
1999/041256.
Johnson, J.V.; Rauckman, B.S.; Baccanari, D.P.; Roth, B. 2,4-
Diamino-5-benzylpyrimidines and analogs as antibacterial agents.
12. 1,2-Dihydroquinolylmethyl analogs with high activity and
specificity for bacterial dihydrofolate reductase. J. Med. Chem.
1989, 32, 1942.
[25]
[26]
[27]
Yadav, J.S.; Reddy, B.V.S.; Premalatha, K.; Murty, M.S.R.
Bi(OTf)3-catalyzed condensation of 2,2-DMP with aromatic
amines: A rapid synthesis of 2,2,4-trimethyl-1,2-dihydroquinolines.
J. Mol. Catal. A: Chem. 2007, 271, 161.
Sridharan, V.; Avendaño, C.; Menéndez, J.C. CAN-catalyzed
three-component reaction between anilines and alkyl vinyl ethers:
stereoselective synthesis of 2-methyl-1,2,3,4-tetrahydroquinolines
and studies on their aromatization. Tetrahedron 2007, 63, 673.
General procedure for the preparation of compound 2a-h: A
solution of substituted aniline 1 (1.0 mmol) in acetone (10 mL per
1.0 g of compound 1) was stirred for 5-10 min at 25-35 °C. To this
was added CAN (0.25 mmol) and the mixture was stirred at 50-55
°C for the time indicated in Table 2. After completion of the
reaction (indicated by TLC), the mixture was cooled to room
temperature and concentrated under reduced pressure. The residue
was diluted with cold water (10 mmol) and extracted with CH2Cl2
(2 x 10 mL). The organic layers were collected, washed with water
(2 x 10 mL), dried over anhydrous Na2SO4 and concentrated under
reduced pressure. The crude product was purified by column
chromatography using hexane-EtOAc.
Ranu, B.C.; Hajra, A.; Dey, S.S.; Jana, U. Efficient microwave-
assisted synthesis of quinolines and dihydroquinolines under
solvent-free conditions. Tetrahedron 2003, 59, 813.
Kundu, D.; Kundu, S.K.; Majee, A.; Hajra, A. A facile synthesis of
2,2,4-trisubstituted-1,2-dihydroquinolines catalyzed by zinc triflate
under solvent-free conditions. J. Chin. Chem. Soc. 2008, 55, 1186.
Pericherla, S.; Mareddy, J.; Geetha, R.D.P.; Gollapudi, P.V.; Pal, S.
Chemical modifications of nimesulide. J. Braz. Chem Soc. 2007,
18, 384.
[4]
[5]
Aono, T.; Doi, T.; Fukatsu, K. Dihydroxyquinoline derivative
1992, JP 04282370 A2
De Nanteuil, G.; Duhault, J.; Ravel, D.; Herve, Y. Thiazolidin-2,4-
dionederivatives, process for their preparation and pharmaceutical
compositions containing them. 1993, EP 0528734 A1.
Roberts, L.J.; Morrow, J.D. Analgesic-antipyretic and anti-
inflammatory agents and drugs employed in the treatment of gout,
[6]
in Goodman
& Gilman's The Pharmacological Basis of
Therapeutics, Hardman, J.G.; Limbird, L.E. Eds. McGraw-Hill,
New York, 2001, pp. 687-731.
[28]
[29]
[30]
[31]
[7]
[8]
Cossy, J.; Poitevin, C.; Gomez Pardo, D.; Peglion, J.-L.; Dessinges,
A. Synthesis of spiro[quinoline-2,4ꢀ-piperidines] Heck versus
radical reaction. Tetrahedron Lett. 1998, 39, 2965.
Kobayashi, K.; Nagato, S.; Kawakitu, M.; Morikawa, O.; Konishi,
H. Synthesis of 1-formyl-1,2-dihydroquinoline derivatives by a
lewis acid-catalyzed cyclization of o-(1-hydroxy-2-alkenyl)phenyl
Isocyanides. Chem. Lett. 1995, 7, 575.
[9]
[10]
Dallacker, F.; Reperich, K.; Mayer, M. Chem.-Ztg 1991, 115, 203.
Arduini, A.; Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.
Unusual friedel-crafts reactions; 4. synthesis of 2,4-diphenyl-2-
methyl-1,2-dihydroquinolines from anilines and phenylacetylene
Synthesis 1981, 975.
1
Spectral and analytical data of compound C: H NMR (300 MHz,
DMSO-d6) ꢂ 8.76 (bs, D2O exchangeable, 1H), 7.41 (t, J = 5.6 Hz,
2H), 7.18-7.04 (m, 3H), 6.85 (s, 1H), 6.04 (bs, D2O exchangeable,
1H), 5.87 (s, 1H), 5.22 (s, 1H), 2.88 (s, 3H), 1.86 (s, 3H), 1.14 (s,
6H); 13C NMR (50 MHz, DMSO-d6) 155.9, 152.8, 143.9, 129.7,
127.2, 126.4, 124.7, 123.5, 119.4, 115.4, 114.3, 100.5, 51.2, 31.1,
18.2; IR (KBr, cm-1) 3350 (bs, NH), 3223 (bs, NH), 2972, 1614
(C=C), 1587, 1487; MS (m/z, EI method) 359.0 (M+1, 100%);
Elemental Analysis found: C, 63.41; H, 6.20; N, 7.94 C19H22N2O3S
Requires C, 63.66, H, 6.19, N, 7.82.
[11]
[12]
Cossy, J.; Poitevin, C.; Gomez Pardo, D.; Peglion, J.-L.; Dessinges,
A. Synthesis of Spiro[benzazepine-2,4‘-piperidine]. J. Org. Chem.
1998, 63, 4554.
Edwards, J.P.; Ringgenberg, J.D.; Jones, T.K. Lewis-acid catalyzed
reaction of 2-isopropenylaniline with ketones: Improved synthesis
of 2,2,4-trisubstituted 1,2-dihydroquinolines. Tetrahedron Lett.
1998, 39, 5139.
[32]
Kyba, E.P.; Abramovitch, R.A. Photolysis of alkyl azides. evidence
for a nonnitrene mechanism. J. Am. Chem. Soc. 1980, 102, 735.
[13]
Walter, H.; Schneider, J. Acid catalyzed reactions of 2-vinylaniline
derivatives with cyclic ketones of the tetralone-, chroman-4-one-
and 2,3-dihydro-1H-quinolin-4-one series. New N(O)-heterocycles