S. Bolaño, J. Bravo, J. Castro, S. García-Fontán, M. C. Marín
ARTICLE
Acknowledgement
Financial support from the Xunta de Galicia (Project
PGIDT04PXIC31401PN) and the Ministerio de Educación y Ciencia
(Project BQU2003-06783) is gratefully acknowledged. We thank the
University of Vigo CACTI services for collecting X-ray data and re-
cording NMR spectra.
References
[1] J. M. O'Connor, in: Comprehensive Organometallic Chemistry II,
vol. 6 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon
Press, Oxford, 1995.
[2] C. A. Tolman, Chem. Rev. 1977, 77, 313.
[3] U. Abram, in: Comprehensive Coordination Chemistry II, vol. 5
(Eds.: J. A. McCleverty, T. J. Meyer), Elsevier, Amsterdam, 2004.
[4] a) S. Bolaño, J. Bravo, S. García-Fontán, J. Castro, J. Organomet.
Chem. 2003, 667, 103; b) J. Bravo, J. Castro, S. García-Fontán,
M. Iglesias, P. Rodríguez-Seoane, J. Organomet. Chem. 2005,
690, 4899; c) S. Bolaño, J. Bravo, J. Castro, S. García-Fontán,
MaJ. Organomet. Chem. 2005, 690, 4945; d) S. Bolaño, J. Bravo,
R. Carballo, S. García-Fontán, U. Abram, E. M. Vázquez-López,
Polyhedron 1999, 18, 1431.
[5] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemi-
cals, third ed. Butterworth/Heinemann, London/Oxford, 1988.
[6] S. P. Schmidt, W. C. Trogler, F. Basolo, Inorg. Synth. 1990, 28,
165.
[7] SMART Version 5.054, Instrument control and data collection
software, Bruker Analytical X-ray Systems Inc., Madison, Wis-
consin, USA, 1997.
[8] SAINT Version 6.01, Data Integration software package. Bruker
Analytical X-ray Systems Inc., Madison, Wisconsin, USA, 1997.
[9] G. M. Sheldrick, SADABS, A Computer Program for Absorption
Corrections, University of Göttingen, Germany, 1996.
[10] P. McArdle, J. Appl. Crystallogr. 1995, 28, 65.
[11] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
[12] L. H. Staal, A. Oskam, K. Vrieze, J. Organomet. Chem. 1979,
170, 235.
[13] G. Albertin, S. Antoniutti, S. García-Fontán, R. Carballo, F. Pa-
doan, J. Chem. Soc., Dalton Trans. 1998, 2071.
[14] a) T. M. Miller, K. J. Ahmed, M. S. Wrighton, Inorg. Chem.
1989, 28, 2347; b) D. H. Gibson, H. He, M. S. Mashuta, Organo-
metallics 2001, 20, 1456; c) W. H. Watson, S. Kandala, M. G.
Richmond, J. Chem. Crystallogr. 2006, 36, 71; d) S. E. Kabir, F.
Ahmed, S. Ghos, M. R. Hassan, M. S. Islam, A. Sharmin, D. A.
Tocher, D. T. Haworth, S. V. Lindeman, T. A. Siddiquee, D. W.
Bennett, K. I. Hardcastle, J. Organomet. Chem. 2008, 693, 2657;
e) A. K. Das, E. Bulak, B. Sarkar, F. Lissner, Th. Schleid, M.
Niemeyer, J. Fiedler, W. Kaim, Organometallics 2008, 27, 218.
[15] S. Bolaño, J. Bravo, J. Castro, S. García-Fontán, M. C. Marín,
Inorg. Chem. Commun. 2008, 11, 1037.
[16] a) X.-Y. Liu, K. Venkatesan, H. W. Schmalle, H. Berke, Organo-
metallics 2004, 23, 3153; b) R. Melenkivitz, J. S. Southern, G. L.
Hillhouse, T. E. Concolino, L. M. Liable-Sands, A. L. Rheingold,
J. Am. Chem. Soc. 2002, 124, 12068; c) R. Carballo, A. Castiñe-
iras, S. García-Fontán, P. Losada-González, U. Abram, E. M.
Vázquez-López, Polyhedron 2001, 20, 2371; d) J. S. Southern,
G. L. Hillhouse, J. Am. Chem. Soc. 1997, 119, 12406; e) D. M.
Heinekey, B. M. Schomber, C. E. Radzewich, J. Am. Chem. Soc.
1994, 116, 4515.
Figure 4. Chelate ring of compound 4.
tions, which are observed in the octahedral arrangement of the
compound.
Thus, the bond angles around the metal atom are more dis-
torted than in the fac isomer, which is the most important
source of distortion the chelating angle P(1)–Re–P(2)
[106.9(1)° in contrast with 91.78(6) for compound 2]. The dis-
tortion affects mainly to the position of phosphorus atom la-
beled as P(1), being the C(3)–Re–P(1) axis [165.6(4)°] the
most distorted in the molecule. The Re–Cl bond length,
2.463(4) Å, is shorter than that found in the fac isomer (vide
supra) and it is also in the low limit of the values found in the
literature [14]. As it was found in compound 2, the different
nature of chloride and phosphinite ligands is reflected on the
bond lengths trans to them: the Re–P bond trans to a carbonyl
ligand [2.454(3) Å] is significantly longer than that trans to
the chloride [2.386(2) Å]. The Re–C bond lengths do not show
important differences among them [2.026(18) Å, average]. Fi-
nally, the eight-membered ring of compound 4 also presents a
different conformation than that of the compound 2 (Figure 4).
Thus, it shows a twisted boat conformation with six atoms [Re,
P(1), P(2), O(51), O(52), and C(52)] virtually coplanar (rms:
0.0593 Å), the C(53) atom situated at 0.862(14) Å above this
plane, and the C(51) atom situated at 0.803(14) Å below it.
This configuration was already observed in other complexes
with this ligand [4b, 4c, 17].
Conclusions
The chloro complexes fac-[ReCl(CO)3L1–3] (1, 2, 3) [L1 =
[17] G. Albertin, S. Antoniutti, J. Castro, S. Carniato, S. García-Fon-
tán, J. Organomet. Chem. 2006, 691, 5592.
[18] G. Albertin, S. Antoniutti, J. Bravo, J. Castro, S. García-Fontán,
M. C. Marín, M. Noè, Eur. J. Inorg. Chem. 2006, 3451.
[19] S. Bucknor, F. A. Cotton, L. R. Falvello, A. H. Reid Jr., C. D.
Schmulbach, Inorg. Chem. 1986, 25, 1021.
1,2-bis(diphenylphosphinoxy)ethane; L2 = 1,3-bis(diphenyl-
phosphinoxy)propane; L3
=
1,2-bis(diisopropylphosphin-
oxy)ethane], and mer-[ReCl(CO)3L2] (4), were synthesized
and characterized. Compounds 2 and 4 were structurally char-
acterized by X-ray diffraction analysis. Compound 4 slowly
isomerizes in solution at room temperature to compound 2. All
complexes are mononuclear compounds.
Received: August 17, 2009
Published Online: December 3, 2009
510
© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2010, 506–510