A. Russo, A. Lattanzi / Tetrahedron: Asymmetry 21 (2010) 1155–1157
1157
Table 2
Stereoselective cyclopropanation of trans-nitroalkenes mediated by catalyst 4ea
CO2Me
MeO2C
O
O
4e
1)
(30 mol%)
chlorobenzene, 18°C
+
NO2
(R)
(R)
MeO
OMe
R
2) DABCO, DMF
rt, 16h
NO2
R
Br
2
1
3
Entry
R
tb (h)
Yield 3c (%)
ee 3d (%) (abs. conf.)
1
2
3
4
5
6
7
8
9
Ph
65
65
69
69
85
77
77
87
75
73
68
69
63
61
50
45
49
68
—
43 (2S,3R)
44 (2S,3R)
35 (2S,3R)
46 (2S,3R)
49 (2S,3R)
49 (2S,3R)
35 (2S,3R)
17 (2S,3R)
42 (2S,3R)
32 (2S,3R)
—
4-CH3C6H4
4-CF3C6H4
4-BrC6H4
4-CH3OC6H4
4-ClC6H4
2-ClC6H4
1-Naphthyl
2-Furyl
112
112
98
10
11
2-Thienyl
Cyclohexyl
a
Conjugate addition was performed with 1 (0.2 mmol), dimethyl bromomalonate 2 (0.22 mmol), 4e (0.06 mmol) in chlorobenzene (0.4 mL). The intramolecular cyclo-
propanation on the crude mixture was performed using DABCO (0.15 mmol) in DMF (1 mL) affording exclusively trans-3.
b
Reaction time of the first step.
Combined yield of two steps.
c
d
Determined by HPLC analysis. Absolute configuration was determined by comparison of specific rotation and elution order of enantiomers via chiral HPLC with those
reported in the literature.7
Ed. 2008, 47, 8460; (d) Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc.
2001, 123, 12168; (e) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.;
Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1430; (f) Davies, H. M. L.;
Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118,
6897; (g) Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K. J. Am.
Chem. Soc. 1994, 116, 2223.
agreement with our previous findings on conjugate addition of
malonate esters to nitroalkenes promoted by the same catalysts
(entry 11). Finally, the Michael addition to the trisubstituted al-
kene trans-b-methyl-b-nitrostyrene did not proceed. Although
the levels of enantioselectivity are still moderate, a,a-diaryl-proli-
4. For selected examples, see: (a) Companyó, X.; Alba, A.-N.; Cárdenas, F.;
Moyano, A.; Rios, R. Eur. J. Org. Chem. 2009, 3075; (b) Ibrahem, I.; Zhao, G. L.;
Rios, R.; Vesely, J.; Sunden, H.; Dziedzic, P.; Córdova, A. Chem. Eur. J. 2008, 14,
7867; (c) Wascholowski, V.; Hansen, H. M.; Longbottom, D. A.; Ley, S. V.
Synthesis 2008, 1269; (d) Xie, H.; Zu, L.; Li, H.; Wang, J.; Wang, W. J. Am. Chem.
Soc. 2007, 129, 10886; (e) Hartikka, A.; Arvidsson, P. I. J. Org. Chem. 2007, 72,
5874; (f) Johansson, C. C. C.; Bremeyer, N.; Ley, S. V.; Owen, D. R.; Smith, S. C.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2006, 45, 6024; (g) Kojima, S.; Suzuki, M.;
Watanabe, A.; Ohkata, K. Tetrahedron Lett. 2006, 47, 9061; (h) Deng, X.-M.; Cai,
P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu, Y.-D.; Dai, L.-X. J. Am.
Chem. Soc. 2006, 128, 9730; (j) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc.
2005, 127, 3240.
5. Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003, 42, 828.
6. Bremeyer, N.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43,
2681.
7. McCooey, S. H.; McCabe, T.; Connon, S. J. J. Org. Chem. 2006, 71, 7494.
8. Xuan, Y.-n.; Nie, S.-z.; Dong, L.-t.; Zhang, J.-m.; Yan, M. Org. Lett. 2009, 11, 1583.
9. Inokuma, T.; Sakamoto, S.; Takemoto, Y. Synlett 2009, 1627.
10. (a) Lattanzi, A. Org. Lett. 2005, 7, 2579; (b) Russo, A.; Lattanzi, A. Adv. Synth.
Catal. 2008, 350, 1991; (c) Lattanzi, A.; Della Sala, G. Eur. J. Org. Chem. 2009,
1845; For a review, see: (d) Lattanzi, A. Chem. Commun. 2009, 1452.
11. Lattanzi, A. Tetrahedron: Asymmetry 2006, 17, 837.
nols afford comparable results to cinchona alkaloid derived thio-
ureas as catalysts, working at room temperature and using more
environmentally friendly reaction conditions for the ring-closure
step.
3. Conclusion
In conclusion, we have shown that besides cinchona-modified
alkaloids and chiral thioureas,
a,a-diaryl prolinols are a new
class of organocatalysts employable in the stereoselective MIRC
approach to cyclopropanes. A convenient protocol to synthetically
useful nitrocyclopropanes has been developed by using commer-
cially available a,a-(2-naphthyl)prolinol and bromomalonate with
easily accessible trans-nitrostyrenes. The functionalised products
are obtained as diastereoisomerically pure trans-isomers, in good
yield and moderate enantioselectivity. We are currently working
on the improvement of MIRC strategy for the stereoselective
cyclopropanation of electron-poor alkenes.
12.
A control experiment was carried out with catalyst 4a (0.06 mmol) and
compound 2 (0.24 mmol) stirred in toluene at room temperature for 72 h. 1H
NMR analysis of the crude reaction mixture substantially showed the
resonances of the catalyst and compound
2 and resonances of a side-
product, which might correspond to the N-alkylated catalyst. Catalyst 4a was
recovered after silica gel chromatography in 76% yield. The alkylation of the
secondary amine moiety of catalysts 4 is a negligible process with respect to
Brønsted base activation of compound 2.
Acknowledgements
MIUR and University of Salerno are acknowledged for financial
support.
13. Luo, R.-S.; Weng, J.; Ai, H.-B.; Lu, G.; Chan, A. S. C. Adv. Synth. Catal. 2009, 351,
2449.
14. Representative procedure for the stereoselective synthesis of nitrocyclopropanes: A
References
reaction vial containing
dimethyl bromomalonate (28.8
0.060 mmol) in chlorobenzene (400
a
stirring bar was charged with
L, 0.22 mmol) and catalyst 4e (21.2 mg,
L) and stirred at room temperature. The
1 (0.20 mmol),
l
l
1. (a) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625; (b)
Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151; (c) Trost, B. M.; Gunzer, J.
L.; Dirat, O.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 10396; (d) Faust, R. Angew.
Chem., Int. Ed. 2001, 40, 2251.
2. (a) Donaldson, W. A. Tetrahedron 2001, 57, 8589; (b) Wong, H. N. C.; Hon, M.-Y.;
Tse, C.-H.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165; (c)
Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229.
3. For reviews, see: (a) Pellissier, H. Tetrahedron 2008, 64, 7041; (b) Lebel, H.;
Marcoux, J. F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977; For
selected examples, see: (c) Zhu, S.; Perman, J. A.; Zhang, X. P. Angew. Chem., Int.
reaction was quenched until almost complete consume of 1 as monitored by
TLC (petroleum ether/diethyl ether 7/3). The reaction mixture was diluted with
DMF (1 mL) and DABCO (22.4 mg, 0.20 mmol) was added at room temperature.
Stirring was maintained overnight, then the reaction mixture was diluted with
EtOAc (30 mL). The organic layer was washed with water (40 mL ꢁ 4), dried
over Na2SO4, and concentrated under vacuum. The residue was purified by
flash column chromatography (petroleum ether/diethyl ether 9/1) to give the
product. Spectroscopic and analytical data of compounds trans-3 matched
those reported in the literature.7,8