D. Nicoletti et al. / Journal of Steroid Biochemistry & Molecular Biology 121 (2010) 43–45
45
[2] D. Feldman, J.W. Pike, F.H. Glorieux (Eds.), Vitamin D, 2nd ed., Academic Press,
New York, 2005.
[3] C. Carlberg, A. Mourin˜o, New vitamin D receptor ligands, Expert Opin. Ther.
Patents 13 (2003) 761–772.
[4] G. Jones, S.A. Strugnell, H.F. DeLuca, Current understanding of the molecular
actions of vitamin D, Physiol. Rev. 78 (1998) 1193–1231.
[5] R. Bouillon, W.H. Okamura, A.W. Norman, Structure–function relationships in
the vitamin D endocrine system, Endocr. Rev. 16 (1995) 200–257.
[6] For a review on actions and biological activity of 24R,25-dihydroxyvitamin D3,
see: H.L. Henry, Vitamin D, in: H.M. Goodman (Ed.), Handbook of Physiology,
Section 7: The Endocrine System, Oxford University Press, New Work, NY, 2000,
pp. 699–718.
[7] A.W. Norman, W.H. Okamura, J.E. Bishop, H.L. Henry, Update on biological
actions of 1␣, 25(OH)2-vitamin D3 (rapid effects) and 24R,25(OH)2-vitamin D3,
Mol. Cell. Endocrinol. 197 (2002) 1–13.
[24] N. Koizumi, M. Ishiguro, M. Yasuda, N. Ikekawa, Stereoselective introduc-
tion of hydroxy groups into the cholesterol side chain. Preparation of (24R)-
and (24S)-24,25-dihydroxy- and (25R)- and (25S)-25,26-dihydroxyvitamin
D3 by asymmetric synthesis, J. Chem. Soc., Perkin Trans. I (1983) 1401–
1410.
[25] M. Seki, J. Rubio-Lightbourn, M. Morisaki, N. Ikekawa, Synthesis of active forms
of vitamin D. IV. Synthesis of 24,25- and 25,26-dihydroxycholesterols, Chem.
Pharm. Bull. 21 (1973) 2783–2785.
[26] A. Fürst, L. Labler, W. Meier, Synthesis of 24R,25-dihydroxycholecalciferol. A
stereoselective synthesis of 24R,25-dihydroxycholesterol, in: A.W. Norman, K.
Schaefer, H.-G. Grigoleit, D.V. Herrath (Eds.), Vitamin D, Chemical, Biochemi-
cal and Clinical Update, Walter de Gruyter, Berlin/New York, 1985, pp. 733–
738.
[27] W. Stepanenko, J. Wicha, Enantioselective synthesis of 24,25-dihydroxy vita-
min D3 northern portion from (S)-3- hydroxy-2,2-dimethylcyclohexane-1-one.
Remote asymmetric induction in an acid-catalysed conjugate addition, Tetra-
hedron Lett. 39 (1998) 885–888.
[8] B.D. Boyan, D.D. Dean, V.L. Sylvia, Z. Schwartz, Steroid hormone action in
musculoskeletal cells involves membrane receptor and nuclear receptor mech-
anisms, Connect. Tissue Res. 44 (2003) 130–135.
[28] M. Odrzywolska, M. Chodynski, J. Zorgdrager, J.-P. Van de Velde, A. Küt-
[9] Z. Schwartz, V.L. Sylvia, D.D. Dean, B.D. Barbara, Cell maturation specific regu-
lation of the PKC signaling pathway by 1␣,25-(OH)2D3 and 24R,25-(OH)2D3 in
growth plate chondrocytes, Biomed. Health Res. 54 (2002) 25–35.
[10] E. Inoue, Y. Ishimi, J. Yamauchi, Differential regulation of extracellular signal-
related kinase phosphorylation by vitamin D3 analogs, Biosci. Biotechnol.
Biochem. 72 (2008) 246–249.
[11] E.-G. Seo, T.A. Einhorn, A.W. Norman, 24R,25-dihydroxyvitamin D3: an essen-
tial vitamin D3 metabolite for both normal bone integrity and healing of tibial
fracture in chicks, Endocrinology 138 (1997) 3864–3872.
[12] I. Nemere, D. Yazzie-Atkinson, D.O. Johns, D. Larsson, Biochemical characteriza-
tion and purification of a binding protein for 24,25-dihydroxyvitamin D3 from
chick intestine, J. Endocrinol. 172 (2002) 211–219.
[13] D. Larsson, I. Nemere, K. Sundell, Putative basal lateral membrane receptors for
24,25-dihydroxyvitamin D2 in carp and Atlantic cod enterocytes: characteriza-
tion of binding and effects on intracellular calcium regulation, J. Cell. Biochem.
83 (2001) 171–186.
[14] B.D. Boyan, V.L. Sylvia, D.D. Dean, Z. Schwartz, 24,25-(OH)2D3 regulates car-
tilage and bone via autocrine and endocrine mechanisms, Steroids 66 (2001)
363–374.
[15] T. Taniyama, H. Wanibuchi, E.I. Salim, Y. Yano, S. Otani, Y. Nishizawa, H. Morii,
S. Fukushima, Chemopreventive effect of 24R,25-Dihydroxyvitamin D3 in N,N’-
dimethylhydrazine-induced rat colon carcinogenesis, Carcinogenesis 21 (2000)
173–178.
ner, Diastereoselective synthesis, binding affinity for vitamin D receptor,
and chiral stationary phase chromatography of hydroxy analogs of 1,25-
dihydroxycholecalciferol and 25-dihydroxycholecalciferol, Chirality 11 (1999)
701–706.
[29] (a) J. Pérez-Sestelo, I. Cornella, O. de Un˜a, A. Mourin˜o, L.A. Sarandeses, Stere-
oselective convergent synthesis of 24,25-dihydroxyvitamin D3 metabolites: a
practical approach, Chem. Eur. J. 8 (2002) 2747–2752;
(b) The identity of the synthetized 24R,25-dihydroxyvitamin D3 (1) was estab-
lished by comparison of its Rf, 1H and 13C-NMR data with a reference sample
from our laboratory.
[30] I. Cornella, R.M. Suárez, A. Mourin˜o, J. Pérez-Sestelo, L.A. Sarandeses, Stereos-
elective convergent synthesis of 24-substituted metabolites and analogues of
vitamin D, J. Steroid Biochem. Mol. Biol. 89–90 (2004) 19–23.
[31] C. Fernández, Z. Gándara, G. Gómez, B. Covelo, Y. Fall, d- and l-serine,
useful synthons for the synthesis of 24-hydroxyvitamin D3 metabolites. A for-
mal synthesis of 1␣,24R,25-(OH)3-D3, 24R,25-(OH)2-D3 and 24S,25-(OH)2-D3,
Tetrahedron Lett. 48 (2007) 2939–2942.
[32] (a) E.G. Baggiolini, J.A. Iacobelli, B.M. Hennessy, M.R. Uskokovic, Stereoselective
total synthesis of 1␣, 25-dihydroxycholecalciferol, J. Am. Chem. Soc. 104 (1982)
2945–2948;
(b) B. Lythgoe, T.A. Moran, M.E.N. Nambudiry, J. Tideswell, P.W. Wrigth, Calcif-
erol and its relatives. Part 22. A direct total synthesis of vitamin D2 and vitamin
D3, J. Chem. Soc., Perkin Trans. 1 (1978) 590–595.
[16] H.Y. Lam, H.K. Schnoes, H.F. DeLuca, T.C. Chen, 24,25-Dihydroxyvitamin D3.
Synthesis and biological activity, Biochemistry 12 (1973) 4851–4855.
[17] J. Redel, P. Bell, F. Delbarre, E. Kodicek, Synthesis of dihydroxy-24,25-
cholecalciferol, a polar metabolite of vitamin D3, C. R. Seances Acad. Sci. D 279
(1974) 529–531.
[18] M. Seki, N. Koizumi, M. Morisaki, N. Ikekawa, Synthesis of active forms of
vitamin D. VI. Synthesis of (24R)- and (24S)-24,25-dihydroxyvitamin D3, Tetra-
hedron Lett. 16 (1975) 15–18.
[19] S.C. Eyley, D.H. Williams, Synthesis of 25-hydroxyvitamin D3 and 25,26-
dihydroxyprovitamin D3, J. Chem. Soc., Perkin Trans. I (1976) 731–735.
[20] J. Redel, N. Bazely, F. Delbarre, Y. Calando, Synthesis of the 24R and 24S diastere-
osiomers of 24,25-dihydroxycholecalciferol [24,25(OH)2D3], C. R. Seances Acad.
Sci. D 283 (1976) 857–860.
[21] G.M. Segal, I.V. Torgov, Preparation of 25-hydroxycholesterol and 24,25-
dihydroxycholesterol, Bioorganicheskaya Khimiya 5 (1979) 1668–1676.
[22] H. Takayama, M. Ohmori, S. Yamada, Facile, stereoselective synthesis of
(24R)-24,25-dihydroxyvitamin D3 usind D-glyceric acid as a chiral synthon,
Tetrahedron Lett. 21 (1980) 5027–5028.
[33] B. Fernández, J.A. Martínez, J.R. Granja, L. Castedo, A. Mourin˜o, Synthesis of
hydrindan derivatives related to vitamin D, J. Org. Chem. 57 (1992) 3173–
3178.
[34] M. Torneiro, Y. Fall, L. Castedo, A. Mourin˜o, A. Short, Efficient copper-mediated
synthesis of 1␣,25-dihydroxyvitamin D2 (1␣,25-dihydroxyergocalciferol) and
C-24 analogs, J. Org. Chem. 62 (1997) 6344–6352.
[35] P. Grieco, T. Takigawa, S.L. Bongers, H. Tanaka, Complete transfer of chiral-
ity in the [3,3]-sigmatropic rearrangement of allylic acetates catalyzed by
palladium(II). Application to stereocontrolled syntheses of prostaglandins pos-
sessing either the C-15(S) or C-15(R) configuration, J. Am. Chem. Soc. 102 (1980)
7587–7588.
[36] (a) S. Takatsuto, M. Ishiguro, N. Ikekawa, Chirality transfer in the cholesterol
side chain; synthesis of (24R)- and (24S)-24 cholesterol, J. Chem. Soc., Chem.
Commun. (1982) 258–260;
(b) M. Kawatsura, Y. Uozumi, M. Ogasawara, T. Hayashi, Palladium-catalyzed
asymetric reduction of racemic allylic esters with formic acid: effects of
phosphine ligands on isomerization of -allylpalladium intermediates and
enantioselectivity, Tetrahedron 56 (2000) 2247–2257;
[23] M Ishiguro, N. Koizumi, M. Yasuda, N. Ikekawa, Stereoselective introduction of
hydroxy-groups into the 24,25-, and 26-positions of the cholesterol side chain,
J. Chem. Soc., Chem. Commun. (1981) 115–117.
(c) B.M. Trost, D.L. Van Vranken, Asymetric transition metal-catalyzed allylic
alkylations, Chem. Rev. 96 (1996) 395–422.