236
Helvetica Chimica Acta – Vol. 96 (2013)
rac-1,4,5,7,8,9-Hexahydrothiocino[5,4-c]pyrazole 6-Oxide (25)/rac-1,4,5,6,8,9-Hexahydrothioci-
no[4,5-c]pyrazole 7-Oxide (26). Yield: 45 mg (49%). Viscous oil. Ratio 25/26 according to the
1H-NMR signals 50 :50. IR (neat): 1010 (S¼O). 1H-NMR (CDCl3): 7.35 (s, HꢀC(3)) and 7.25 (s,
HꢀC(3)); 3.32 – 2.95 (m, 9 H), 2.92 – 2.78 (m, 2 H), 2.73 – 2.62 (m, 4 H), 2.52 – 2.42 (m, 1 H), 2.21 – 2.05
(m, 3 H), 2.04 – 1.93 (m, 1 H). 13C-NMR (CDCl3): 145.3, 144.6 (C(9a)); 132.5, 130.9 (C(3a)); 115.6, 115.5
(C(3)); 55.8, 54.0, 51.5, 51.2 (C(5,7) of 25 and C(6,8) of 26); 25.0, 23.6, 23.2, 21.1, 18.2, 16.0 (C(4,8,9) of
25 and C(4,5,9) of 26). EI-MS: 184 (22, Mþ), 108 (12), 85 (66), 84 (21), 83 (100). Anal. calc. for
C8H12N2OS (184.3): C 52.15, H 6.56, N 15.20; found: C 52.40, H 6.85, N 15.17.
1,4,5,7,8,9-Hexahydrothiocino[5,4-c]pyrazole 6,6-Dioxide (27)/1,4,5,6,8,9-hexahydrothiocino[4,5-
c]pyrazole 7,7-Dioxide (28). Yield 38 mg (38%). Viscous oil. Ratio 27/28 according to the 1H-NMR
signals 25 :75. IR (CHCl3): 1105 (SO2), 1270 (SO2). 1H-NMR (CDCl3, 27): 7.40 (s, HꢀC(3)); 3.21 – 3.14,
1
3.02 – 2.90, 2.03 – 2.01 (3m, CH2(4,5,7,8,9)). H-NMR (CDCl3, 28): 7.32 (s, HꢀC(3)), 3.28 – 3.23, 3.21 –
3.14, 2.96 – 2.88, 2.83 – 2.77, 2.01 – 1.93 (5m, CH2(4,5,6,8,9)). 13C-NMR (CDCl3, 27): 145.2 (C(9a));
130.2 (C(3a)); 116.1 (C(3)); 59.7, 52.9 (C(5,7)); 23.1, 21.4, 18.2 (C(4,8,9)). 13C-NMR (CDCl3, 28): 147.0
(C(9a)); 129.8 (C(3a)); 115.9 (C(3)); 58.2, 52.5 (C(6,8)); 24.5, 20.8, 19.1 (C(4,5,9)). EI-MS: 200 (1, Mþ),
84 (93), 66 (100). Anal. calc. for C8H12N2O2S (200.3): C 47.98, H 6.04, N 13.99; found: C 47.88, H 6.30, N
14.02.
Reaction of the 9 or rac-16 with CS2. Alkyne (1.0 mmol) and CS2 (4 ml, 5.08 g, 66.7 mmol) were
refluxed under N2 for 12 – 15 d. The colorless soln. turned orange and then redbrown. The soln. was
concentrated, and the products were purified by CC (SiO2 (3 ꢃ 40 cm); toluene/petroleum ether
(b.p. 40 – 708) 2 :1 for 29 and AcOEt/EtOH 1:1 for product 30).
(2Z/E)-4,7,8,9-Tetrahydro-2-(4,7,8,9-tetrahydro-5H-1,3-dithiolo[4,5-d]thiocin-2-ylidene)-5H-1,3-di-
thiolo[4,5-d]thiocine; 29). Yield: 53 mg (13%). Red-orange crystals. M.p. 1958. IR (CDCl3): 1270, 1445.
1H-NMR (CDCl3): 2.75 – 2.63 (m, CH2(4,5,7,9,4’,5’,7’,9’)); 1.91 – 1.81 (m, CH2(8,8’)). 13C-NMR (CDCl3):
128.8, 128.7 (C(3a,9a,3aꢃ,9aꢃ)); 108.2 (C(2,2’)); 34.7, 32.0, 31.4, 31.1, 25.1 (C(4,5,7,8,9,4’,5’,7’,8’,9’)). EI-MS:
404 (100, Mþ), 202 (4, M2þ). Anal. calc. for C16H20S6 (404.7): C 47.49, H 4.98; found: C 47.39, H 4.89. As
second fraction, a dark-red solid C23H30S7 (85 mg, 16%) was obtained. The structure was not determined.
syn-(2Z/E)- and anti-(2Z/E)-4,7,8,9-Tetrahydro-2-(4,7,8,9-tetrahydro-6-oxido-5H-1,3-dithiolo[4,5-
d]thiocin-2-ylidene)-5H-1,3-dithiolo[4,5-d]thiocine 6-Oxide; 30). Yield: 179 mg (41%). Red-orange
solid. M.p. 2048. IR (KBr): 1010, 1445, 1625. 1H-NMR (CDCl3): 3.30 – 3.19 (m, 2 H); 3.19 – 3.07 (m, 4 H);
3.00 – 2.89 (m, 2 H); 2.88 – 2.73 (m, 4 H); 2.55 – 2.45 (m, 2 H); 2.42 – 2.30 (m, 2 H); 2.26 – 2.20 (m, 2 H);
2.20 – 2.13 (m, 2 H) (CH2 groups). 13C-NMR (CDCl3): 129.0, 129.0, 127.3, 127.2 (C(3a,9a,3aꢃ,9aꢃ)); 108.3,
108.2 (C(2,2’)); 52.6, 52.6, 47.7, 47.6, 47.4, 47.3 (C(5,7,5’,7’)); 26.5, 26.4, 23.0, 22.8, 18.9, 18.8
(C(4,8,9,4’,8’,9’)). EI-MS: 436 (30, Mþ), 142 (100), 97 (56), 85 (49), 72 (58), 71 (84). Anal. calc. for
C16H20O2S6 (436.7): C 44.01, H 4.62, S 44.05; found: C 43.89, H 4.61, S 43.87.
REFERENCES
[1] J. Tummatorn, P. Batsomboon, R. J. Clark, I. V. Alabugin, G. B. Dudly, J. Org. Chem. 2012, 77, 2093.
[2] W. Chen, D. Wang, C. Dai, D. Hamelberg, B. Wang, Chem. Commun. 2012, 48, 1736.
[3] K. Banert, O. Plefka, Angew. Chem. 2011, 123, 6295; Angew. Chem., Int. Ed. 2011, 50, 6171.
[4] V. A. Dꢃyakonov, R. A. Tuktarova, L. M. Khalilov, U. M. Dzhemilev, Tetrahedron Lett. 2011, 52,
4602.
[5] M. F. Debets, S. S. van Berkel, J. Dommerholt, A. J. Dirks, F. P. J. T. Rutjes, F. L. van Delft, Accounts
Chem. Res. 2011, 44, 805.
[6] J. Moran, C. S. McKay, J. P. Pezacki, Can. J. Chem. 2011, 89, 148.
[7] B. C. Sanders, F. Friscourt, P. A. Ledin, N. E. Mbua, S. Arumugam, J. Guo, T. J. Boltje, V. V. Popik,
G.-J. Boons, J. Am. Chem. Soc. 2011, 133, 949.
[8] F. Starke, M. Walther, H.-J. Pietzsch, Arkivoc 2010, Part XI, 350.
[9] E. M. Sletten, H. Nakamura, J. C. Jewett, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 11799.
[10] J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272.