Published on Web 08/18/2010
Transition State of ADP-Ribosylation of Acetyllysine
Catalyzed by Archaeoglobus fulgidus Sir2 Determined by
Kinetic Isotope Effects and Computational Approaches
Yana Cen and Anthony A. Sauve*
Department of Pharmacology, Weill Medical College of Cornell UniVersity, 1300 York AVenue,
New York, New York 10065
Received December 8, 2009; E-mail: aas2004@med.cornell.edu
Abstract: Sirtuins are protein-modifying enzymes distributed throughout all forms of life. These enzymes
bind NAD+, a universal metabolite, and react it with acetyllysine residues to effect deacetylation of protein
side chains. This NAD+-dependent deacetylation reaction has been observed for sirtuin enzymes derived
from archaeal, eubacterial, yeast, metazoan, and mammalian species, suggesting conserved chemical
mechanisms for these enzymes. The first chemical step of deacetylation is the reaction of NAD+ with an
acetyllysine residue which forms an enzyme-bound ADPR-peptidylimidate intermediate and nicotinamide.
In this manuscript, the transition state for the ADP-ribosylation of acetyllysine is solved for an Archaeoglobus
fulgidus sirtuin (Af2Sir2). Kinetic isotope effects (KIEs) were obtained by the competitive substrate method
and were [1N-15N] ) 1.024(2), [1′N-14C] ) 1.014(4), [1′N-3H] ) 1.300(3), [2′N-3H] ) 1.099(5), [4′N-3H] )
0.997(2), [5′N-3H] ) 1.020(5), [4′N-18O] ) 0.984(5). KIEs were calculated for candidate transition state
structures using computational methods (Gaussian 03 and ISOEFF 98) in order to match computed and
experimentally determined KIEs to solve the transition state. The results indicate that the enzyme stabilizes
a highly dissociated oxocarbenium ionlike transition state with very low bond orders to the leaving group
nicotinamide and the nucleophile acetyllysine. A concerted yet highly asynchronous substitution mechanism
forms the ADPR-peptidylimidate intermediate of the sirtuin deacetylation reaction.
mammalian sirtuins regulate adipogenesis,16 adipolysis,16
apoptosis,17-20 insulin secretion,21,22 gluconeogenesis,23,24 mi-
tochondrial biogenesis,25,26 metabolic pathways,25,26 DNA
1. Introduction
The sirtuins are phylogenetically conserved NAD+ dependent
enzymes that regulate diverse signaling processes within cells
via protein covalent modification.1,2 The sirtuins catalyze
removal of protein acetyllysines, although in some cases they
have been reported to ADP-ribosylate proteins and other
substrates as well.3-8 The sirtuins have been implicated in
cellular and organism adaptations to stress and nutrient
intake,2,9-11 and regulate lifespan in different organisms includ-
ing yeast,12 worms,13 flies14 and probably in mammals.15 The
(13) Tissenbaum, H. A.; Guarente, L. Nature 2001, 410, 227–230.
(14) Rogina, B.; Helfand, S. L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
15998–16003.
(15) Dali-Youcef, N.; Lagouge, M.; Froelich, S.; Koehl, C.; Schoonjans,
K.; Auwerx, J. Ann. Med. 2007, 39, 335–345.
(16) Picard, F.; Kurtev, M.; Chung, N.; Topark-Ngarm, A.; Senawong, T.;
Machado De Oliveira, R.; Leid, M.; McBurney, M. W.; Guarente, L.
Nature 2004, 429, 771–776.
(17) Luo, J.; Nikolaev, A. Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.;
Guarente, L.; Gu, W. Cell 2001, 107, 137–148.
(1) Sauve, A. A.; Wolberger, C.; Schramm, V. L.; Boeke, J. D. Annu.
ReV. Biochem. 2006, 75, 435–465.
(18) Vaziri, H.; Dessain, S. K.; Ng Eaton, E.; Imai, S. I.; Frye, R. A.;
Pandita, T. K.; Guarente, L.; Weinberg, R. A. Cell 2001, 107, 149–
159.
(2) Blander, G.; Guarente, L. Annu. ReV. Biochem. 2004, 73, 417–435.
(3) French, J. B.; Cen, Y.; Sauve, A. A. Biochemistry 2008, 47, 10227–
10239.
(19) Yamakuchi, M.; Ferlito, M.; Lowenstein, C. J. Proc. Natl. Acad. Sci.
U.S.A. 2008, 105, 13421–13426.
(4) Merrick, C. J.; Duraisingh, M. T. Eukaryotic Cell 2007, 6, 2081–
2091.
(20) Firestein, R.; Blander, G.; Michan, S.; Oberdoerffer, P.; Ogino, S.;
Campbell, J.; Bhimavarapu, A.; Luikenhuis, S.; de Cabo, R.; Fuchs,
C.; Hahn, W. C.; Guarente, L. P.; Sinclair, D. A. PLoS One 2008, 3,
e2020.
(5) Du, J.; Jiang, H.; Lin, H. Biochemistry 2009, 48, 2878–2890.
(6) Haigis, M. C.; Mostoslavsky, R.; Haigis, K. M.; Fahie, K.; Christodou-
lou, D. C.; Murphy, A. J.; Valenzuela, D. M.; Yancopoulos, G. D.;
Karow, M.; Blander, G.; Wolberger, C.; Prolla, T. A.; Weindruch,
R.; Alt, F. W.; Guarente, L. Cell 2006, 126, 941–954.
(7) Kowieski, T. M.; Lee, S.; Denu, J. M. J. Biol. Chem. 2008, 283, 5317–
5326.
(21) Moynihan, K. A.; Grimm, A. A.; Plueger, M. M.; Bernal-Mizrachi,
E.; Ford, E.; Cras-Meneur, C.; Permutt, M. A.; Imai, S. Cell Metab.
2005, 2, 105–117.
(22) Bordone, L.; Motta, M. C.; Picard, F.; Robinson, A.; Jhala, U. S.;
Apfeld, J.; McDonagh, T.; Lemieux, M.; McBurney, M.; Szilvasi, A.;
Easlon, E. J.; Lin, S. J.; Guarente, L. PLoS Biol. 2006, 4, e31.
(23) Liu, Y.; Dentin, R.; Chen, D.; Hedrick, S.; Ravnskjaer, K.; Schenk,
S.; Milne, J.; Meyers, D. J.; Cole, P.; Yates, J., III; Olefsky, J.;
Guarente, L.; Montminy, M. Nature 2008, 456, 269–273.
(24) Rodgers, J. T.; Lerin, C.; Haas, W.; Gygi, S. P.; Spiegelman, B. M.;
Puigserver, P. Nature 2005, 434, 113–118.
(8) Garcia-Salcedo, J. A.; Gijon, P.; Nolan, D. P.; Tebabi, P.; Pays, E.
EMBO J. 2003, 22, 5851–5862.
(9) Haigis, M. C.; Guarente, L. P. Genes DeV. 2006, 20, 2913–2921.
(10) Guarente, L.; Picard, F. Cell 2005, 120, 473–482.
(11) Yang, T.; Fu, M.; Pestell, R.; Sauve, A. A. Trends Endocrinol. Metab.
2006, 17, 186–191.
(12) Lin, S. J.; Defossez, P. A.; Guarente, L. Science 2000, 289, 2126–
2128.
(25) Rodgers, J. T.; Lerin, C.; Gerhart-Hines, Z.; Puigserver, P. FEBS Lett.
2008, 582, 46–53.
9
12286 J. AM. CHEM. SOC. 2010, 132, 12286–12298
10.1021/ja910342d 2010 American Chemical Society