Direct Construction of Bicyclic Heterocycles
FULL PAPER
added to the stirred mixture at room temperature, and the resulting mix-
ture was stirred at 608C for 30 min and filtered through a short pad of
silica gel with n-hexane/EtOAc (1:1). The filtrate was concentrated and
purified by flash chromatography over silica gel with n-hexane/EtOAc
(3:2) to give 33a (36.0 mg, 89% yield) as colorless crystals. M.p. 145–
1468C (n-hexane/CHCl3); 1H NMR (500 MHz, CDCl3): d=1.89 (dddd,
J=12.0, 12.0, 12.0, 9.0 Hz, 1H), 2.03 (dddd, J=17.5, 9.0, 7.0, 5.0 Hz, 1H),
2.31–2.38 (m, 1H), 2.42 (s, 3H), 2.44 (s, 3H), 2.48 (dd, J=12.0, 6.0 Hz,
1H), 2.64 (ddd, J=12.0, 9.0, 5.0 Hz, 1H), 3.00–3.05 (m, 1H), 3.27 (ddd,
J=12.0, 10.5, 6.0 Hz, 1H), 3.59 (ddd, J=12.0, 5.0, 5.0 Hz, 1H), 3.75 (dd,
J=10.5, 9.0 Hz, 1H), 5.78 (dd, J=7.0, 5.0 Hz, 1H), 7.26 (d, J=8.0 Hz,
2H), 7.30 (d, J=8.0 Hz, 2H), 7.58 (d, J=8.0 Hz, 2H), 7.65 ppm (d, J=
8.0 Hz, 2H); 13C NMR (125 MHz, CDCl3): d=21.5 (2C), 23.8, 30.2, 44.3,
47.1, 56.0, 105.0, 127.2 (2C), 127.5 (2C), 129.6 (2C), 129.8 (2C), 133.5,
134.3, 135.9, 143.9, 144.1 ppm; IR (KBr): n˜ = 1597 (C=C), 1357 (NSO2),
1152 cmÀ1 (NSO2); MS (FAB): m/z (%): 433 (93) [M+H], 277 (100);
HRMS (FAB): calcd for C21H25N2O4S2 [M+H]: 433.1256; found:
433.1249.
2830–2854; Angew. Chem. Int. Ed. Engl. 1995, 34, 2589–2612.
[8] For the reactions with a dual nucleophile, see: a) I. Minami, M.
Lu, Tetrahedron Lett. 1990, 31, 111–114; c) J.-R. Labrosse, P.
[9] For furan synthesis, see: a) M. Yoshida, Y. Morishita, M. Fujita, M.
2086; for indene synthesis, see: c) X.-H. Duan, L.-N. Guo, H.-P. Bi,
1499–1502; for cyclic carbonate synthesis, see: g) M. Yoshida, M.
Acknowledgements
This work was supported in part by Grants-in-Aid for Encouragement of
Young Scientists (A) (H.O.) and for Scientific Research (B) (T.T.) from
the Ministry of Education, Culture, Sports, Science and Technology of
Japan, and Targeted Proteins Research Program. A.O. is grateful for Re-
search Fellowships from the Japan Society for the Promotion of Science
(JSPS) for Young Scientists. Appreciation is expressed to Fundamental
Studies in Health Sciences of the National Institute of Biomedical Inno-
vation (NIBIO).
[10] A portion of study on the domino cyclization of propargyl bromides
affording fused bicyclic heterocycles has already been reported in a
preliminary communication; a) H. Ohno, A. Okano, S. Kosaka, K.
Tsukamoto, M. Ohata, K. Ishihara, H. Maeda, T. Tanaka, N. Fujii,
4478–4481; c) S. Inuki, Y. Yoshimitsu, S. Oishi, N. Fujii, H. Ohno, J.
[11] For example, treatment of propargyl mesylate with CuBr·SMe2 in
the presence of LiBr gave a mixture of allenyl/propargyl bromides.
[12] a) S. Ogoshi, K. Tsutsumi, S. Nishiguchi, H. Kurosawa, J. Organo-
Tsutsumi, T. Kawase, K. Kakiuchi, S. Ogoshi, Y. Okada, H. Kurosa-
[13] There would be a good chance for enantioselective cyclization by
use of a chiral ligand. However, facile isomerization of the cycliza-
tion products to achiral dihydropyrrole derivatives (Scheme 10) will
decrease its synthetic utility.
[15] It is known that syn-h3-allylpalladium complexes are relatively more
stable than other isomers, even if the central carbon of the allyl
group is substituted by an aryl group; for an example, see: a) R.
[16] The structures of 33b and 33e were determined by deprotection of
the nosyl or tosyl group on the six-membered ring of the corre-
sponding fused pyrrole derivatives 39b and 39e. For more details,
see the Supporting Information.
[17] Bicyclic product 33d did not isomerize to the fused pyrrole of type
38 under the acidic conditions. This is presumably due to the lower
reactivity of enamine moiety of 33d that has a highly electron-with-
drawing nosyl group on the enamine nitrogen.
[18] Isomerization reaction was promoted by CDCl3 (stabilized by silver
foil before use) or 3n HCl, whereas commercial CHCl3 was not ef-
fective for isomerization. These results can be attributed to the pres-
ence of EtOH (0.5%) as the stabilizer in CHCl3. Actually, addition
of EtOH to CDCl3 completely inhibited the isomerization reaction,
presumably by suppressing acid formation.
Bernan, D. A. Montenegro, J. D. Korshalla, W. M. Maiese, D. A.
Steinberg, M. Greenstein, J. Antibiot. 1994, 47, 1417–1424; c) R. C.
Crouch, A. O. Davis, T. D. Spitzer, G. E. Martin, M. M. H. Sharaf,
Ohta, S. Nozoe, Heterocycles 1996, 43, 685–690; e) R. M. Kariba,
g) K. Mohamad, T. Suzuki, Y. Baba, K. Zaima, Y. Matsuno, Y. Hira-
sawa, M. R. Mukhtar, K. Awang, A. H. A. Hadi, H. Morita, Hetero-
cycles 2007, 74, 969–976.
[2] a) Y. Besidsky, K. Luthman, A. Claesson, C. J. Fowler, I. Csçregh,
D. T. W. Chu, C. S. Cooper, Q. Li, A. K. L. Fung, S. Wang, L. L.
Shen, R. K. Flamm, A. M. Nilius, J. D. Alder, J. A. Meulbroek, Y. S.
[3] a) G. Pless, T. J. Frederiksen, J. J. Garcia, R. J. Reiter, J. Pineal Res.
Zhao, L. Bi, W. Bi, C. Wang, Z. Yang, J. Ju, S. Peng, Bioorg. Med.
son, M. D. Garcia, M. R. Smith, S. J. Gray, R. G. Britton, S. Mahale,
Dꢃsman Tonin, V. A. Barbosa, C. C. Bocca, E. R. F. Ramos, C. V.
Nakamura, W. F. Costa, E. A. Basso, T. U. Nakamura, M. H. Sarra-
[4] a) H. Ohno, H. Hamaguchi, M. Ohata, T. Tanaka, Angew. Chem.
b) H. Ohno, H. Hamaguchi, M. Ohata, S. Kosaka, T. Tanaka, J. Am.
[5] a) H. Hamaguchi, S. Kosaka, H. Ohno, T. Tanaka, Angew. Chem.
b) H. Hamaguchi, S. Kosaka, H. Ohno, N. Fujii, T. Tanaka, Chem.
[19] CCDC-764389 (33d) and 764390 (44d) contain the supplementary
crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
Chem. Eur. J. 2010, 16, 8410 – 8418
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
8417