M. Song et al. / Journal of Organometallic Chemistry 696 (2011) 2122e2128
2127
(80 mL, 3:1 v/v). The reaction mixture was stirred at 140 ꢀC for 20 h
and a brown precipitate was obtained after cooling at room
temperature. The precipitate was collected and washed with
deionized water (80 mL) and methanol (40 mL). Subsequently, the
cyclometalated iridium dimer was dried under vacuum to afford
a brown solid. Cyclometalated iridium dimer (0.6 g, 0.26 mmol) and
2-pyrazinecarboxylic acid (0.16 g, 1.28 mmol) or 5-methyl-2-pyr-
azinecarboxylic acid (0.18 g, 1.28 mmol) were mixed with Na2CO3
(0.27 g, 2.56 mmol) in 2-ethoxyethanol (30 mL). The mixture was
refluxed for 12 h under a N2 atmosphere. After cooling at room
temperature, the crude solution was poured onto water and
extracted with ethyl acetate, dried over anhydrous MgSO4 and
evaporated in a vacuum. The residue was purified by silica gel
chromatography (hexane:ethyl acetate ¼ 1:4) as an eluent and
further purified by recrystallization twice using dichloromethane/
hexane mixture to afford a red solid complex (0.25 g, 78%).
deposited with effective area of 4 mm2 at a pressure 5 ꢂ 10ꢁ6 Torr.
The film thickness was measured by using a-Step IQ surface profiler
(KLA Tencor, San Jose, CA). EL spectra and current density-voltage-
luminance (J-V-L) characteristics of PhOLEDs were measured with
a programmable Keithley model 236 power source and spectrascan
CS-1000 photometer, respectively. All measurements were carried
out at room temperature under an ambient atmosphere without
encapsulation.
Acknowledgements
This work was supported by National Research Foundation of
Korea (NRF) grant funded from the Ministry of Education, Science
and Technology (MEST) of Korea (No. M10600000157-06J0000-
15710) and Basic Science Research Program through the National
Research Foundation of Korea (NRF) grant funded from the Ministry
of Education, Science and Technology (MEST) of Korea for the
Center for Next Generation Dye-sensitized Solar Cells (No. 2010-
0001842). This work was supported by the New & Renewable
Energy program of the Korea Institute of Energy Technology Eval-
uation and Planning (KETEP) grant (No. 20103020010050) funded
by the Ministry of Knowledge Economy, Republic of Korea.
4.2.1. (EO-CVz-PhQ)2Ir(prz)
1H NMR (300 MHz, CDCl3):
d (ppm): 9.04 (s, 1H), 8.78 (d, 2H),
8.64 (s, 1H), 8.55 (s, 1H), 8.27 (s, 1H), 8.13 (d, J ¼ 7.8 Hz, 1H), 8.04
(d, 1H), 7.82e7.61 (m, 12H), 7.51e7.12 (m, 12H), 7.03 (s, 1H), 6.86
(t, 1H), 6.32 (s, 1H), 4.09e3.77 (m, 4H), 3.58e3.25 (m, 4H),
3.15e2.88(m, 14H) 13C NMR (300 MHz, CDCl3):
d (ppm): 170.8,
170.2,168.5,150.6,150.5,148.6,147.9,147.1,147.0,146.6,144.0,142.8,
142.2, 140.4, 140.3, 139.2, 138.5, 137.6, 137.5, 137.3, 129.5, 129.1,
129.0, 128.8, 128.7, 126.4, 126.1, 125.5, 125.2, 125.1, 125.0, 124.6,
123.9, 123.8, 119.7, 119.3, 119.1, 119.0, 118.9, 118.0, 117.0, 115.2, 113.6,
109.0, 108.7, 71.6, 71.3, 70.2, 70.1, 68.0, 67.5, 59.0, 58.9, 41.9. Anal.
Calcd. For C69H57N6O6Ir: C, 65.85; H,4.57; N,6.68; found: C,66.15;
H,4.63; N,6.56.
References
[1] M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson,
S.R. Forrest, Nature 395 (1998) 151e154.
[2] S. Lamansky, P. Djurovich, D. Murphy, F. Adbel-Razzaq, H.E. Lee, C. Adachi,
P.E. Burrows, S.R. Forrest, M.E. Thompson, J. Am. Chem. Soc. 123 (2001)
4304e4312.
[3] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa,
T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am.
Chem. Soc. 125 (2003) 12971e12979.
[4] R.N. Bera, N. Cumpstey, P.L. Burn, I.D.W. Samuel, Adv. Funct. Mater. 17 (2007)
1149e1152.
[5] S.C. Lo, N.A.H. Male, J.P.J. Markham, S.W. Magennis, P.L. Burn, O.V. Salata,
I.D.W. Samuel, Adv. Mater. 14 (2002) 975e979.
[6] C.L. Lee, K.B. Lee, J.J. Kim, Appl. Phys. Lett. 77 (2000) 2280e2282.
[7] X. Gong, M.R. Robinson, K.C. Ostrowski, D. Moses, G.C. Bazan, A.J. Heeger, Adv.
Mater. 14 (2002) 581e585.
4.2.2. (EO-CVz-PhQ)2Ir(mprz)
1H NMR (300 MHz, CDCl3):
d (ppm): 8.92 (s, 1H), 8.81e8.77
(t, 2H), 8.63 (s, 1H), 8.27 (d, J ¼ 7.8 Hz, 1H), 8.14 (d, J ¼ 7.2 Hz, 1H),
8.04 (d, J ¼ 7.8 Hz, 1H), 7.85e7.58 (m, 12H), 7.54e7.12 (m, 12H), 7.00
(s, 1H), 6.85 (t, 1H), 6.30 (s, 1H), 4.07e3.73 (m, 4H), 3.58e3.43
(m, 4H), 3.32e2.86(m,14H), 2.47 (s, 3H) 13C NMR (300 MHz, CDCl3):
[8] J.C. Ostrowski, M.R. Robinson, A.J. Heeger, G.C. Bazan, Chem. Commun. (2002)
784e785.
d
(ppm): 170.8, 170.3, 168.6, 158.4, 150.6, 150.5, 148.6, 147.8, 147.0,
146.8, 144.1, 142.8, 142.2, 140.4, 140.3, 139.2, 138.5, 137.6, 137.5,
137.4, 129.7, 129.2, 129.0, 128.8, 128.7, 126.4, 126.1, 125.6, 125.2,
125.1, 125.0, 124.7, 123.9, 123.8, 119.7, 119.4, 119.1, 119.0, 118.9, 118.0,
117.0, 115.2, 113.6, 109.0, 108.7, 71.6, 71.5, 70.2, 70.1, 68.1, 67.7, 59.0,
58.9, 42.0, 22.1. Anal. Calcd. For C70H59N6O6Ir: C, 66.07; H,4.67;
N,6.60; found: C,66.16; H,4.64; N,6.54.
[9] X.H. Yang, F.I. Wu, D. Neher, C.H. Chien, C.F. Shu, Chem. Mater. 20 (2008)
1629e1635.
[10] Y.J. Pu, M. Higashidate, K.I. Nakayama, J. Kido, J. Mater. Chem. 18 (2008)
4183e4188.
[11] S.C. Lo, G.J. Richards, J.P.I. Markham, E.B. Namdas, S. Sharma, P.L. Burn,
I.D.W. Samuel, Adv. Funct. Mater. 15 (2005) 1451e1458.
[12] I.A. Barlow, T. Kreouzis, D.G. Lidzey, Appl. Phys. Lett. 94 (2009)
243301e243303.
[13] D. Krautz, E. Lunedei, J. Puigdollers, G. Badenes, R. Alcubilla, S. Cheylan, Appl.
Phys. Lett. 96 (2010) 033301e033303.
[14] M.J. Harding, D. Poplavskyy, V.E. Choong, F. So, A.J. Campbell, Adv. Funct.
Mater. 20 (2010) 119e130.
[15] J. Ding, J. Lü, Y. Cheng, Z. Xie, L. Wang, X. Jing, F. Wang, Adv. Funct. Mater. 18
(2008) 2754e2762.
[16] B. Liang, L. Wang, Y. Xu, H. Shi, Y. Cao, Adv. Funct. Mater. 17 (2007)
3580e3589.
[17] G. Zhou, W.Y. Wong, B. Yao, Z. Xie, L. Wang, Angew. Chem. Int. Ed. Engl. 46
(2007) 1149e1151.
[18] A.W. Freeman, S.C. Koene, P.R.L. Malenfant, M.E. Thompson, J.M.J. Fréchet,
J. Am. Chem. Soc. 122 (2000) 12385e12386.
[19] S.C. Lo, R.E. Harding, C.P. Shipley, S.G. Stevenson, P.L. Burn, I.D.W. Samuel,
J. Am. Chem. Soc. 131 (2009) 16681e16688.
[20] W.S. Huang, C.W. Lin, J.T. Lin, J.H. Huang, C.W. Chu, Y.H. Wud, H.C. Lin, Org.
Electron 10 (2009) 594e606.
[21] H. Zhen, C. Luo, W. Yang, W. Song, B. Du, J. Jiang, C. Jiang, Y. Zhang, Y. Cao,
Macromolecules 39 (2006) 1693e1700.
[22] S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane, Org. Electron 4 (2003)
105e111.
[23] X. Chen, J.L. Liao, Y. Liang, M.O. Ahmed, H.E. Tseng, S.-A. Chen, J. Am. Chem.
Soc. 125 (2003) 636e637.
[24] Lei Wang, Yang Jiang, Jia Luo, Yan Zhou, Junhong Zhou, Jian Wang, Jian Pei,
Yong Cao, Adv. Mater. 21 (2009) 4854e4858.
4.3. Fabrication of PhOLEDs and measurement
The PhOLEDs were fabricated in the configuration ITO/
PEDOT:PSS (40 nm)/TCTA (30 nm)/doped emitting layer (50 nm)/
OXD-7 (20 nm)/Ba (3 nm)/Al (100 nm). The indium tin oxide (ITO)
glass substrates with a sheet resistance of 20
U per square was
washed in turn with a substrate-cleaning detergent, deionized
water, acetone, and isopropyl alcohol, and finally treated with
UVeozone chamber for 20 min. The PEDOT:PSS (40 nm, CLEVIOS P
VP AI 4083) was spin-coated directly onto the patterned ITO glass
and baked in air at 150 ꢀC for 10 min. Subsequently, the TCTA
interlayer solution (0.5 wt% in toluene) was spin coated and then
dried at 180 ꢀC for 30 min on a hot plate. The emitting layer was
then spin-coated onto the interlayer coated substrate from a mixed
solution of PVK, TPD, OXD-7 (weight ratio, 2:1:1), and doped
with 8 wt% of (EO-CVz-PhQ)2Ir(prz) or (EO-CVz-PhQ)2Ir(mprz). All
solutions used in the PhOLEDs fabrication were filtered with
0.20 mm PTFE syringe filter. The emitting layer was then baked at
[25] J. Huang, T. Watanabe, K. Ueno, Y. Yang, Adv. Mater. 19 (2007) 739e743.
[26] S.O. Jung, Q. Zhao, J.W. Park, S.O. Kim, Y.H. Kim, H.Y. Oh, J. Kim, S.K. Kwon,
Y. Kang, Org. Electron 10 (2009) 1066e1073.
80 ꢀC for 30 min in glove box. Finally, as typical cathode, consisting
of OXD-7 (20 nm)/Ba (3 nm)/Al (100 nm) was thermal vapor