Y. Tanaka, T. Koike, M. Akita
SHORT COMMUNICATION
The Cambridge Crystallographic Data Centre via www.ccdc.cam.
ac.uk/data_request/cif.
electron transfer can be explained by the potential energy
curve diagrams shown in Scheme 3b.[23] The IVCT transi-
tion from the ground state C followed by thermal relaxation Supporting Information (see footnote on the first page of this arti-
cle): Full synthetic and spectroscopic details of 1–5.
in a manner similar to the dinuclear system leads to the
intermediary state D. Subsequent thermally induced elec-
tronic transition from the other iron centre to the dicobalt
unit leads to the other ground state E to accomplish the
electron transfer between the two iron centres via the dico-
balt unit. In this context, the energy gap (∆E) is a key factor
for the determination of Vab, because a diminution of ∆E
brings about an increase in the electronic coupling Vab. ∆E
can be experimentally estimated by the CV data, that is, ∆E
is equivalent to the difference of the redox potentials for
the iron and cobalt centres (∆ECo/Fe2).[24] As summarized
in Table 1, the order of the ∆ECo/Fe2 values are 2a Ͼ 3a Ͼ
4a Ͼ 5a. Thus a compound with a small ∆ECo/Fe2 value
gives a large Vab value (5a Ͼ 4a Ͼ 3a Ͼ 2a), in accord with
the experimental results described above. As a result of
these electronic effects, the communication performance
(Vab) of the dicobalt adducts can be finely tuned by choos-
ing a ligand with appropriate electron-donating ability. ∆E
can be correlated to the densities at the dicobalt unit, which
Acknowledgments
The financial support from the Japanese government (Grants-in-
Aid for Scientific Research: Nos. 18065009, 20044007 and
50167839; M. A.) and the Japan Society for the Promotion of Sci-
ence (Y. T.) are gratefully acknowledged. We are also grateful to
Dr. F. Paul (University of Rennes 1) for the helpful discussion on
the ESR analysis.
[1] J. Jortner, M. A. Ratner, Molecular Electronics, Blackwell Sci-
ence, Oxford, 1997; A. Aviram, M. Ratner, Ann. NY Acad. Sci.
1998, 852; M. Ratner, Nature 2000, 404, 137; B. L. Feringa
(Ed.), Molecular Switches, Wiley-VCH, Weinheim, 2001; J. M.
Tour, Acc. Chem. Res. 2000, 33, 791; N. Robertson, G. A.
Mc Gowan, Chem. Soc. Rev. 2003, 32, 96; M. A. Reed, T. Lee
(Eds.), Molecular Nanoelectronics, American Scientific Publish-
ers, Stevenson Ranch, CA, 2003; M. C. Petty, Molecular Elec-
tronics: From Principles to Practice, Wiley, New York, 2008; K.
Szacilowski, Chem. Rev. 2008, 108, 3481.
Co
[2] V. Coropceanu, J. Cornil, D. A. S. Filho, Y. Olivier, R. Silbey,
J.-L. Brédas, Chem. Rev. 2007, 107, 926.
can be estimated by E1/2 and νCO as discussed above; in
other words, an electron-donating ligand induces better
communication between the two metal centres.
[3] a) F. Paul, C. Lapinte, Coord. Chem. Rev. 1998, 178–180; F.
Paul, C. Lapinte, Coord. Chem. Rev. 1998, 427; b) M. I. Bruce,
P. J. Low, Adv. Organomet. Chem. 2004, 50, 231; c) S. Szafert,
J. A. Gladysz, Chem. Rev. 2006, 106, PR1; d) T. Ren, Chem.
Rev. 2008, 108, 4185–4207; e) M. Akita, T. Koike, Dalton
Trans. 2008, 3523; f) P. F. H. Schwab, M. D. Levin, J. Michl,
Chem. Rev. 1999, 99, 1863; g) P. F. H. Schwab, J. R. Smith, J.
Michl, Chem. Rev. 2005, 105, 1197.
[4] C. Joachim, J. K. Gimzewski, A. Aviram, Nature 2000, 408,
541; M. Irie, Chem. Rev. 2000, 100, 1685.
[5] S. Fraysee, C. Coudret, J.-P. Launay, Eur. J. Inorg. Chem. 2000,
1581; G. Guirado, C. Christophe, J.-P. Launay, J. Phys. Chem.
C 2007, 111, 2770; Y. Tanaka, T. Koike, M. Akita, Chem. Com-
mun. 2007, 1169; K. Motoyama, T. Koike, M. Akita, Chem.
Commun. 2008, 5812; Y. Liu, C. Lagrost, K. Costuas, N. Tou-
char, H. Le Bozec, S. Rigaut, Chem. Commun. 2008, 6117; Y.
Lin, J. Yuan, M. Hu, J. Cheng, J. Yin, S. Jin, S. H. Liu, Organo-
metallics 2009, 28, 6402.
[6] H. Tannai, K. Tsuge, Y. Sasaki, Inorg. Chem. 2005, 44, 5206;
C. D. Pietro, S. Campagna, M. T. Gandolfi, R. Ballardini, S.
Fnni, W. R. Browne, J. G. Vos, Inorg. Chem. 2002, 41, 2871; M.
Haga, M. M. Ali, S. Koseki, K. Fujimoto, A. Yoshimura, K.
Nozaki, T. Ohno, K. Nakajima, D. J. Stufkens, Inorg. Chem.
1996, 35, 3335.
Scheme 3. Energy diagrams for (a) di- and (b) tricomponent sys-
tems of Class II. Vab: electronic coupling; νIVCT: IVCT transition
energy; ∆E: energy gap between the Fe and Co centres; ∆G: ther-
mal electron-transfer barrier.
[7] Y. Ie, T. Kawabata, T. Kaneda, Y. Aso, Chem. Lett. 2006, 35,
1366.
Conclusions
[8] See Supporting Information.
We have succeeded in fine tuning the communication be-
tween the two metal centres in the organometallic molecu-
lar wire 1 by attachment and removal of an appropriate
dicobalt fragment (Scheme 1). It is notable that: (1) the
wire-like performance of the derivatives varies in the range
from Robin–Day Class IIA (2) to Class III (1); and (2) 1
and the cobalt adducts 2–5 can be interconverted in a re-
versible and facile manner. In the case of the dicobalt ad-
ducts, the indirect communication via the dicobalt step-
pingstone can be finely tuned by controlling the electronic
structure of the dicobalt unit.
[9] Crystallographic data for 1b: C78H74Cl8Fe2P4S2 (1b·4CH2Cl2),
¯
Mr = 1594.67; triclinic space group P1; a = 9.3537(13) Å, b =
12.1333(15) Å, c = 17.988(2) Å; α = 81.632(6)°; β = 84.916(6)°;
γ = 67.604(5)°; V = 1866.1(4) Å3; Z = 1; ρcalcd. = 1.419 gcm–3;
µ = 0.860 mm–1; λ = 0.71073 Å; T = –60 °C; total data col-
lected = 15426; R1 = 0.0538 [5126 observed reflections with
Fo2Ͼ2σ(Fo2)]; wR2 = 0.1520 for 424 variables and all 7796
unique reflections.
[10] Preliminary X-ray crystallographic structure analysis of 3b re-
vealed the equatorial coordination of the dppm ligand as well
as the value of 7.34 Å (r for the dicobalt adducts; Table 1) for
the average Fe···Co separation.
[11] KC (comproportionation constant) values are as follows: ∆E
(in mV)/KC = 188/1.5ϫ103 (1a), 112/79 (2a), 165/6.1ϫ102 (3a),
189/1.5ϫ103 (4a), and 358/1.1ϫ106 (5a).
CCDC-775289 (1b) contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
3574
www.eurjic.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2010, 3571–3575