D. Kundu et al. / Catalysis Communications 11 (2010) 1157–1159
1159
from ethanol (420 mg, 77% as white powder). mp 160–161 °C; IR
References
(KBr) 3305, 2954, 1685, 1525, 1340 cm−1; 1H NMR (300 MHz, DMSO-
d6): δ=9.97 (s, 1H), 8.10 (d, J=8.1 Hz, 1H), 7.76 (d, J=8.1 Hz, 1H),
7.67 (d, J=8.7 Hz, 1H), 7.44 (t, J=7.5 Hz, 1H), 7.26 (t, J=7.5 Hz, 1H),
7.17 (d, J=9.0 Hz, 2H), 5.53 (q, J=7.2 Hz, 1H), 3.48 (s, 3H), 2.02–1.96
(m, 1H), 1.81–1.74 (m, 1H), 1.37–1.33 (m, 1H), 1.25–1.14 (m, 1H), 0.87
(t, J=7.2 Hz, 3H); 13C NMR (75 MHz, DMSO-d6): δ=156.2, 152.8, 132.1,
128.6, 128.5, 128.3, 126.3, 122.4 (2 °C), 119.9, 118.5, 51.3, 48.0, 36.4, 19.6,
13.8; Anal. Cald. for C16H19NO3: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.18;
H, 6.92; N 4.94.
[1] N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199.
[2] K. Tanaka, F. Toda, Chem. Rev. 100 (2000) 1025.
[3] H.R. Hobbs, N.R. Thomas, Chem. Rev. 107 (2007) 2786.
[4] D. Seebach, J.L. Matthews, J. Chem. Soc. Chem. Commun. (1997) 2015.
[5] E. Juaristi, In Enantioselective Synthesis of β-Amino Acids, John Wiley & Sons, New
York, 1997.
[6] T. Dingermann, D. Steinhilber, G. Folkers, In Molecular Biology in Medicinal
Chemistry, Wiley-VCH, 2004.
[7] A.Y. Shen, C.T. Tsai, C.L. Chen, Eur. J. Med. Chem. 34 (1999) 877.
[8] S. Kantevari, S.V.N. Vuppalapati, L. Nagarapu, Catal. Commun. 8 (2007) 1857.
[9] N.P. Selvam, P.T. Perumal, Tetrahedron Lett. 47 (2006) 7481.
[10] N.P. Selvam, P.T. Perumal, Tetrahedron 64 (2008) 2972.
[11] B. Das, K. Laxminarayana, B. Ravikanth, B.R. Rao, J. Mol. Catal. A Chem. 261 (2007)
180.
4. Conclusion
[12] L. Nagarapu, M. Baseeruddin, S. Apuri, S. Kantevari, Catal. Commun. 8 (2007)
1729.
[13] M.M. Khodaei, A.R. Khosropour, H. Moghanian, Synlett (2006) 916.
[14] S.B. Patil, P.R. Singh, M.P. Surpur, S.D. Samant, S. D. Ultrason. Sonochem. 14 (2007)
515.
[15] S.B. Patil, P.R. Singh, M.P. Surpur, S.D. Samant, Synth. Commun. 37 (2007) 1659.
[16] H.R. Shaterian, A. Hosseinian, M. Ghashang, Tetrahedron Lett. 49 (2008) 5804.
[17] G.H. Mahdavinia, M.A. Bigdeli, M.M. Heravi, Chin. Chem. Lett. 19 (2008) 1171.
[18] H.R. Shaterian, H. Yarahmadi, M. Ghashang, Tetrahedron 64 (2008) 1263.
[19] A.R. Hajipour, Y. Ghayeb, N. Sheikhan, A.E. Ruoho, Tetrahedron Lett. 50 (2009)
5649.
[20] G.C. Nandi, S. Samai, R. Kumar, M.S. Singh, Tetrahedron Lett. 50 (2009) 7220.
[21] H.R. Shaterian, A. Hosseinian, M. Ghashang, Chin. J. Chem. 27 (2009) 821.
[22] S. Urinda, D. Kundu, A. Majee, A. Hajra, Heteroatom Chem. 20 (2009) 232.
[23] A. Hajra, D. Kundu, A. Majee, J. Heterocyclic Chem. 46 (2009) 1019.
[24] A. Wolff, V. Boechmer, W. Vogt, F. Ugozzoli, G.D. Andreetti, J. Org. Chem. 55 (1990)
5665.
In summary, we have demonstrated herein that imidazole-based
zwitterionic-type molten salt is a new class of bifunctional organoca-
talyst for the synthesis of 2-amidoalkyl and 2-carbamatoakyl naphthol
derivatives through a three-component condensation reaction under
solvent-free conditions. The present procedure is equally effective to
aliphatic and aryl aldehydes. The non-hazardous experimental condi-
tions, reusable catalyst, ease of reaction, short reaction times, high
yields, and metal-free catalyst are the notable advantages of this
procedure. Thus, it provides a better and more practical alternative to
the existing methodologies.
[25] B. Das, K. Laxminarayana, M. Krishnaiah, Y. Srinivas, Synlett (2007) 3107.
[26] R.W. Vander de Water, T.R.R. Pettus, Tetrahedron 58 (2002) 5367.
[27] B.C. Ranu, S.S. Dey, S.S.A. Hajra, Tetrahedron 59 (2003) 2417.
[28] D. Kundu, R.K. Debnath, A. Majee, A. Hajra, Tetrahedron Lett. 50 (2009) 6998.
[29] A.K. Chakraborti, S.R. Roy, D. Kumar, P. Chopra, Green Chem. 10 (2008) 1111.
[30] A. Chakraborti, S.R. Roy, J. Am. Chem. Soc. 131 (2009) 6902.
[31] The electrophilic activation of the aldehyde carbonyl is expected to take place
through hydrogen bond formation with the C-2 hydrogen atom of the
imidazolium moiety. In addition, molten-salt plays the electrophilic/electrophil-
ic-nucleophilic dual activation role for aza-Michael addition in the final step to
form the product. Recently Chakraborti et al. have described an “eletrophilic
nucleophilic dual activation” role of the ionic liquid. See ref. [29,30].
Acknowledgments
A. H. is pleased to acknowledge the financial support from DST
(Grant No. SR/FTP/CS-107/2006). We are thankful to DST-FIST and
UGC-SAP. D. K. thanks CSIR for a fellowship. A. M. acknowledges
financial support from CSIR (Grant No. 01(2251)/08/EMR-II). We also
express our sincere thanks to Prof. B. C. Ranu, Department of
Chemistry, Indian Association for the Cultivation of Science, for his
advice and constant encouragement.