5094
P. Galatsis et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5089–5094
of the Asp b-carboxylic acid followed bromide displacement with
the appropriate carboxylic or hydroxamic acid (vide supra) to gen-
erate the desired targets 11 and 12.
Supplementary data
Supplementary data (coordinate files (pdb) containing the ac-
tive site residues with the bound ligand for Figs. 3 and 5) associ-
ated with this article can be found, in the online version, at
With these compounds in-hand, their potency for ICE inhibi-
tion was determined and the data is presented in Table 3. Com-
pound 13 shows that the P4 substituent of 1 is more efficient
at binding compared to the Cbz group present in 12. The ester
analogs 11 and hydroxamates 12 are significantly more potent
than the reference compound 13. The analysis for these inhibitors
was complicated by the observation that these more potent pep-
tide derivatives of esters 11 could now serve as leaving groups.
This mechanistic switch is not unknown, since di- and tripeptide
acyloxyalkyl ketones can lead to bimodal inhibitors as previously
described.13
Comparison of these compounds in a functional assay using hu-
man peripheral blood mononuclear cells (PBMC) shows a much
different result. In this functional assay, esters 11b and 11c are
approximately equipotent with reference compound 13. In con-
trast 11a is about 10-fold more potent in the PBMC assay than
the other compounds. This poor correlation between enzymatic
inhibition and cell-based activity has been noted previously4a
and is problematic for the prediction and discovery of an ICE inhib-
itor with therapeutic potential. Since ICE is an intracellular en-
zyme, the loss of activity in going from the enzyme assay to the
cell-based assay may, in part, be a result of transport problems
across the cellular membrane. This explanation, however, seems
far too simplistic when structurally similar compounds such as
11a and 11b show divergent functional activity. A satisfactory
explanation of this poor correlation awaits future study.
References and notes
1. (a) Thornberry, N. A.; Bull, H. G.; Calaycay, J. R.; Chapman, K. T.; Howard, A. D.;
Kostura, M. J.; Miller, D. K.; Molineaux, S. M.; Weidner, J. R.; Aunin, J.; Elliston,
K. O.; Ayala, J. M.; Casano, F. J.; Chin, J.; Ding, G. J.-F.; Egger, L. A.; Gaffney, E. P.;
Limjuco, G.; Palyha, O. C.; Raju, S. M.; Rolando, A. M.; Salley, J. P.; Yamin, T.-T.;
Lee, T. D.; Shively, J. E.; MacCross, M.; Mumford, R. A.; Schmidt, J. A.; Tocci, M. J.
Nature 1992, 356, 768; (b) Thornberry, N. A. Br. Med. Bull. 1996, 53, 478; (c) Bird,
S.; Zou, J.; Wang, T.; Munday, B.; Cunningham, C.; Secombers, C. J. Cytokine
Growth Factor Rev. 2002, 13, 483; (d) Joosten, L. A. B.; van den Berg, W. B. Drug
Discov. Today 2006, 3, 169.
2. (a) Ator, M. A.; Dolle, R. E. Curr. Pharm. Des. 1995, 1, 191; (b) Giegel, D. A.; Kostlan,
C. R. Annu. Rep. Med. Chem. 1998, 33, 183; (c) Talanian, R. V.; Brady, K. D.; Cryns, V.
L. J. Med. Chem. 2000, 43, 3351; (d) Ashwell, S. Expert Opin. Ther. Patents 2001, 11,
1593; (e) Randle, J. C. R.; Harding, M. W. H.; Ku, G.; Schonharting, M.; Kurrle, R.
Expert Opin. Investig. Drugs 2001, 10, 1207; (f) Braddock, M.; Quinn, A. Nat. Rev.
Drug Discov. 2004, 3, 1; (g) Dinarello, C. A. Curr. Opin. Pharmacol. 2004, 4, 378; (h)
Le, G. T. E.; Abbenante, G. Curr. Med. Chem. 2005, 12, 2963; (i) Fischer, U.; Schulze-
Osthoff, K. Pharmacol. Rev. 2005, 57, 187.
3. (a) Wilson, K. P.; Black, J. F.; Thomson, J. A.; Kim, E. E.; Griffith, J. P.; Navia, M. A.;
Murcko, M. A.; Chambers, S. P.; Aldape, J. P.; Raybuck, S. A.; Livingston, D. J.
Nature 1994, 370, 270; (b) Walker, N. P. C.; Talanian, R. V.; Brady, K. D.; Dang, L.
C.; Bump, N. J.; Ferenz, C. R.; Franklin, S.; Ghayur, T.; Hackett, M. C.; Hammill, L.
D.; Herzog, L.; Hugunin, M.; Houy, W.; Mankovick, J. A.; McGuiness, L.;
Orlewicz, E.; Paskind, M.; Pratt, C. A.; Reis, P.; Summani, A.; Terranova, M.;
Welch, J. P.; Moller, A.; Tracey, D. E.; Kamen, R.; Wong, W. W. Cell 1994, 78, 343.
4. (a) Thornberry, N. A.; Molineaux, S. M. Protein Sci. 1994, 4, 3; (b) Rano, T. A.;
Timkey, T.; Peterson, E. P.; Rotonda, J.; Nicholson, D. W.; Becker, J. W.;
Champman, K. T.; Thornberry, N. A. Chem. Biol. 1997, 4, 149.
Having examined the inhibitory activity of the esters 11, our
focus was directed towards the hydroxamic acid terminated pepti-
domimetics 12 (Table 3). Compound 12a, based on the original
library hit 6, was found to be almost 40-fold more potent, by
IC50, than reference compound 13. Of the three hydroxamates pre-
sented in Table 3, 12a proved to be the weakest. Compounds 12b
and 12c were found to be about eightfold more potent. Addition-
ally, hydroxamates 12 stand in contrast to esters 11. The former
did not display the change in mechanism, from reversible to irre-
versible enzyme inhibition, observed with the later despite them
both having comparable potency.
In summary, we have designed and synthesized a series of ICE
inhibitors with a variety of esters and hydroxamates that interact
with the prime side amino acid residues of the enzyme. These
inhibitors were designed and optimized using a protected aspartic
acid core and then the most potent groups were appended to a lar-
ger tripeptide producing low nanomolar ICE inhibitors. The results
demonstrate that, while potent inhibitors can be generated, one
must be cognizant of the nature of the binding interaction. This
is important to ensure the mechanism of inhibition does not
change. In sharp contrast to the ester variation, the hydroxamates
appear to have a narrower SAR trend. These two series have re-
sulted in an improved understanding of the binding requirements
of the lipophilic pocket on the prime side of the enzyme and this
information can now be utilized in the design of future ICE
inhibitors.
5. (a) Rudolphi, K.; Gerwin, N.; Verzijl, N.; van der Kraan, P.; van den Berg, W.
Osteoarthritis Cartilage 2003, 11, 738; (b) Bauer, C.; Loher, F.; Dauer, M.; Mayer,
C.; Lehr, H. A.; Schonharting, M.; Hallwachs, R.; Endres, S.; Eigler, A. Dig. Dis. Sci.
2007, 52, 1642.
6. Wannamaker, W.; Davies, R.; Namchuk, M.; Pollard, J.; Ford, P.; Ku, G.; Decker,
C.; Charifson, P.; Weber, P.; Germann, U. A.; Kuida, K.; Randle, J. C. R. J.
Pharmacol. Exp. Ther. 2007, 321, 509.
7. Cai, S. X.; Guan, L.; Jia, S.; Wang, Y.; Yang, W.; Tseng, B.; Drewe, J. Bioorg. Med.
Chem. Lett. 2004, 14, 5295.
8. Miller, B. E.; Krasney, P. A.; Gauvin, D. M.; Holbrook, K. B.; Koonz, D. J.;
Abruzzese, R. V.; Miller, R. E.; Pagani, K. A.; Dolle, R. E.; Ator, M. A.; Gilman, S. C.
J. Immunol. 1995, 154, 1331.
9. Ueno, H.; Kawai, M.; Shimokawa, H.; Hirota, M.; Ohmi, M.; Sudo, R.; Ohta, A.;
Arano, Y.; Hattori, K.; Ohmi, T.; Kato, N.; Kojima, M.; Ueno, Y.; Yamamoto, M.;
Moriguchi, Y.; Eda, H.; Masubuchi, K. Bioorg. Med. Chem. Lett. 2009, 19, 199.
10. Kulkarni, S. S.; Kulkarni, V. M. J. Med. Chem. 1999, 42, 373.
11. Mjalli, A. M. M.; Chapman, K. T.; MacCross, M.; Thornberry, N. A. Bioorg. Med.
Chem. Lett. 1993, 3, 2689.
12. Harter, W. G.; Albrecht, H.; Brady, K.; Caprathe, B.; Dunbar, J.; Gilmore, J.; Hays,
S.; Kostlan, K. R.; Lunney, B.; Walker, N. Bioorg. Med. Chem. Lett. 2004, 14, 809.
13. Brady, K. D. Biochemistry 1998, 37, 8508.
14. All compounds were characterized by 1H NMR, MS and were >98% pure by
either CHN analysis or analytical HPLC.
15. Albeck, A.; Estreicher, G. Tetrahedron 1997, 53, 5325.
16. Human peripheral blood mononuclear cells (PBMC) were isolated from
heparinized blood by centrifugation over a Ficoll cushion and then washed
three times with PBS. The PBMC’s were suspended in a medium containing RPMI
1640 with glutamine, penicillin, streptomycin, and 2% human AB serum and then
plated at 106 cells per well in a 96 well flat bottom plate. PBMC’s were stimulated
overnight with 10 ng/mL of LPS in the presence or absence of inhibitor. The
medium was harvested and the level of mature IL-1b was determined using an
ELISA kit from R&D Systems. Compound inhibition (IC50 values) was assessed by
determining the concentration of agent which reduced IL-1b levels by 50%.