C O M M U N I C A T I O N S
this was indeed the case, as pyridines (entry 15), oxazolines (entries
16-17), pyrazoles (entries 18-20), or esters (entries 21-25) could
be efficiently coupled.17 Remarkably, the presence of such groups
in either metha or para position resulted in little conversion to
products, indicating that electronic effects might not be the only
factor coming into play.15 On the basis of these results, we
anticipated that high levels of site selectivity could be achieved
based on subtle steric and electronic differences among multiple
C-O bonds. Indeed, while exhaustive reduction was observed for
simple substrates (entry 11), site selectivity was possible when using
appropriate ortho-directing groups (entries 13 and 18), providing
an additional handle for further manipulation. Similarly, sp2 C-O
bonds were selectively activated in the presence of multiple sp3
C-O bonds (entries 12, 19, and 20); note, however, that activated
benzylic C-O bonds18 could also be coupled with equal efficiency
(entry 14).18,19
In summary, a highly efficient Ni-catalyzed reduction of aryl
ethers has been developed. The ready availability of the substrates
and the remarkable substrate scope observed make this method
attractive to synthetic chemists. Further investigations into related
processes and the identification of reactive intermediates are ongoing
in our laboratories.
Acknowledgment. We thank the ICIQ Foundation, Consolider
Ingenio 2010 (CSD2006-0003), and MICINN (CTQ2009-13840)
for financial support. Johnson Matthey, Umicore, and Nippon
Chemical Industrial are acknowledged for a gift of metal and ligand
sources.
Supporting Information Available: Experimental procedures and
spectral data for all compounds. This material is available free of charge
Scheme 2. Synthetic Applicability
References
(1) (a) Clayden, J. Organolithiums: SelectiVity for Synthesis; VCH: Weinheim,
2002 (b) Snieckus, V. Chem. ReV. 1990, 90, 879.
(2) Taylor, R. Electrophilic Aromatic Substitution; Wiley: New York, 1995.
(3) Klumpp, G. W. ReactiVity in Organic Chemistry; Wiley: New York, 1982;
pp 227-378.
(4) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig,
J. F. Chem. ReV. 2010, 110, 890.
(5) Hoveyda, A. H.; Evans, D. E.; Fu, G. C. Chem. ReV. 1993, 93, 1307.
(6) For selected stoichiometric C-O cleavage approaches using strong reducing
agents, see: (a) Azzena, U.; Dettori, G.; Idini, M. V.; Pisano, L.; Secchi,
G. Tetrahedron 2003, 59, 7961. (b) Casado, F.; Pisano, L.; Farriol, M.;
Gallardo, I.; Marquet, J.; Melloni, G. J. Org. Chem. 2000, 65, 322. (c)
Maercker, A. Angew. Chem., Int. Ed. 1987, 26, 972.
(7) Astruc, D. Modern Arene Chemistry; Wiley-VCH: Weinheim, 2002.
(8) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979,
101, 2246.
The usefulness of our methodology is nicely illustrated in Scheme
2. Thus, structurally related 3-5 could be selectively prepared from
2-naphthol.15 We believe this demonstrates the flexibility in
synthetic design when employing temporary directing groups. The
preparation of 5 is particularly noteworthy; to the best of our
knowledge, the Ni-catalyzed activation of inert C-O bonds with
substrates containing two ortho substituents has no precedent in
the literature. In view of the high ubiquity of aryl ethers in many
pharmaceutically relevant molecules,20 we envisioned that a late-
stage, site-selective, C-O bond activation could be used as a
manifold for natural product diversity. Gratifyingly, quinine and
estradiol derivatives (6 and 7) could be obtained in 63 and 62%
yield.
(9) For selected references, see: (a) Yu, D.-G.; Li, B.-J.; Zheng, S.-F.; Guan,
B.-T.; Wang, B.-Q.; Shi, Z.-J. Angew. Chem., Int. Ed. 2010, 49, 4566. (b)
Shimasaki, T.; Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49,
2929. (c) Tobisu, M.; Shimasaki, T.; Chatani, N. Chem. Lett. 2009, 38,
710. (d) Li, B.-J.; Xu, L.; Wu, Z.-H.; Guan, B.-T.; Sun, C.-L.; Wang, B.-
Q.; Shi, Z.-J. J. Am. Chem. Soc. 2009, 131, 14656. (e) Guan, B.-T.; Wang,
Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 14468. (f)
Li, B.-J.; Li, Y.-Z.; Lu, X.-Y.; Liu, J.; Guan, B.-T.; Shi, Z.-J. Angew. Chem.,
Int. Ed. 2008, 47, 10124. (g) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew.
Chem., Int. Ed. 2008, 47, 4866. (h) Quasdorf, K. W.; Tian, X.; Garg, N. K.
J. Am. Chem. Soc. 2008, 130, 14422, and references therein.
(10) (a) Alvarez-Bercedo, P.; Flores-Gaspar, A.; Correa, A.; Martin, R. J. Am.
Chem. Soc. 2010, 132, 466. (b) Correa, A.; Martin, R. J. Am. Chem. Soc.
2009, 131, 15974.
(11) For a selection of removable directing groups in organic synthesis, see: (a)
Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1159.
(b) Itami, K.; Mitsudo, K.; Fujita, K.; Ohashi, Y.; Yoshida, J.-I. J. Am.
Chem. Soc. 2004, 126, 11058. (c) Patel, S. J.; Jamison, T. F. Angew. Chem.,
Int. Ed. 2004, 43, 3941, and references therein.
(12) For an elegant related C-CN cleavage, see: Tobisu, M.; Nakamura, R.;
Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 3174.
(13) (a) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033. (b) Alonso,
F.; Beletskaya, I. P.; Yus, M. Chem. ReV. 2002, 102, 4009.
(14) No conversion to products was observed when using Pd catalysts.
(15) For full experimental details, see Supporting Information.
(16) Ueno, S.; Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc.
2006, 128, 16516.
Scheme 3. Mechanistic Considerations
(17) We note that all our attempts to couple 1-methoxy-2-(methoxymethyl)ben-
zene were unsuccessful, thus ruling out the ortho-directing ability of a
proximal CH2OMe group.
Next, we performed deuterium-labeling experiments to gather
evidence about the reaction mechanism (Scheme 3). Interestingly,
2a and 2a-D were exclusively obtained when using Et3SiH(D),21
thus ruling out a mechanistic scenario via ꢀ-hydride elimination
from preformed arylnickel(II) alkoxy intermediates.22 These results
clearly indicate that our protocol can be used for introducing
deuterium atoms23 in unbiased arene backbones from readily
aVailable precursors. Although further mechanistic studies are
needed, we tentatively propose a pathway consisting of C-O
oxidative addition, σ-bond metathesis with the Si-H bond, and
reductive elimination from a nickel(II) hydride intermediate.24
(18) Guan, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-
Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268.
(19) Less activated 1-(methoxymethyl)naphthalene as well as simple alkyl or
benzyl methyl ethers gave no conversion to products.
(20) Rao, A. V. R.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S. Chem. ReV. 1995,
95, 2135.
(21) Et3SiH(D) and TMDSO gave comparable results. See ref 15.
(22) Bryndza, H. E.; Tam, W. Chem. ReV. 1988, 88, 1163.
(23) Junk, T.; Catallo, W. J. Chem. Soc. ReV. 1997, 27, 401.
(24) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009,
131, 8815.
JA106943Q
9
J. AM. CHEM. SOC. VOL. 132, NO. 49, 2010 17353