Mazik and Sonnenberg
JOCArticle
FIGURE 2. Structures of receptors 1-5.
FIGURE 3. Structures of sugars investigated in this study.
of the primary amide group of asparagine and the isopropyl
group of valine (see Figure 1) in the formation of hydrogen
bonds and van der Waals contacts, respectively, has inspired the
design of artificial receptor3-5 1 (see Figure 2), which was
expected to be able to recognize a sugar molecule through a
combination of hydrogen bonding, CH-π interactions,6 and
van der Waals contacts. Instead of the primary amide group
shown in Figure 1, we have used the 2-aminopyridine unit, which
can be regarded as a heterocyclic analogue of the asparagine/
glutamine primary amide side chain and was shown to be an
effective recognition group for carbohydrates.7 The binding
properties of 1 toward selected monosaccharides (see Figure 3)
were compared with those of compounds 2-5shown in Figure 2.
1H NMR spectroscopic titrations in competitive and non-
competitive media, as well as binding studies in two-phase
(3) For reviews on carbohydrate recognition with artificial receptors
using noncovalent interactions, see: (a) Davis, A. P.; James, T. D. In
Functional Synthetic Receptors; Schrader, T., Hamilton, A. D., Eds.,
Wiley-VCH: Weinheim, Germany, 2005. (b) Davis, A. P.; Wareham, R. S.
Angew. Chem. 1999, 111, 3161-3179; Angew. Chem., Int. Ed., 1999, 38,
2979-2996. (c) Walker, D. B.; Joshi, G.; Davis, A. P. Cell. Mol. Life Sci.
2009, 66, 3177–3191. (d) Mazik, M. Chem. Soc. Rev. 2009, 38, 935–956.
(e) Jin, S.; Cheng, Y.; Reid, S.; Li, M.; Wang, B. Med. Res. Rev. 2010, 30, 171–257.
(4) For examples of carbohydrate receptors operating through noncova-
lent interactions see refs 3 and 7 and: (a) Ferrand, Y.; Klein, E.; Barwell,
(5) For reviews on boronic acid-based receptors, which use covalent
interactions for sugar binding, see refs 3a,3e and: (a) James, T. D.; Shinkai,
S. Top. Curr. Chem. 2002, 218, 159–200. (b) James, T. D.; Sandanayake, K. R. A.
S.; Shinkai, S. Angew. Chem. 1996, 108, 2038-2050; Angew. Chem., Int. Ed.
1996, 35, 1910-1922.For a recent example of a boronic acid-based receptor, see:
(c) Phillips, M. D.; Fyles, T. M.; Barwell, N. P.; James, T. D. Chem. Commun.
2009, 6557–6559. For a recent discussion on o-hydroxymethyl phenylboronic
ꢀ
ꢀ
acid (benzoboroxole) binding capability, see: (d) Berube, M.; Dowlut, M.; Hall,
D. G. J. Org. Chem. 2008, 73, 6471–6479.
ꢀ
N. P.; Crump, N. P.; Jimenez-Barbero, J.; Vicent, C.; Boons, G.-J.; Ingale, S.;
ꢀ
Davis, A. P. Angew. Chem., Int. Ed. 2009, 48, 1775–1779. (b) Arda, A.; Venturi,
(6) For recent discussions on the nature of the CH-π interactions, see:
(a) Nishio, M.; Umezawa, Y.; Honda, K.; Tsuboyama, S.; Suezawa, H.
CrystEngComm 2009, 11, 1757–1788. (b) Takahashi, O; Kohno, Y.; Nishio,
M. Chem. Rev. 2010, DOI: 10.1021/cr100072x.
(7) (a) Mazik, M.; Hartmann, A. Beilstein J. Org. Chem., 2010, 6, No. 9.
(b) Mazik, M.; Hartmann, A.; Jones, P. G. Chem. Eur. J. 2009, 15, 9147–
9159. (c) Mazik, M.; Buthe, A. C. Org. Biomol. Chem. 2009, 7, 2063–2071.
(d) Mazik, M.; Hartmann, A. J. Org. Chem. 2008, 73, 7444–7450. (e) Mazik,
M.; Buthe, A. C. Org. Biomol. Chem. 2008, 6, 1558–1568. (f) Mazik, M.;
Kuschel, M. Chem. Eur. J. 2008, 14, 2405–2419. (g) Mazik, M.; Kuschel, M.
Eur. J. Org. Chem. 2008, 1517–1526. (h) Mazik, M.; Buthe, A. C. J. Org.
Chem. 2007, 72, 8319–8326. (i) Mazik, M.; Cavga, H. J. Org. Chem. 2007, 72,
ꢁ
ꢀ
C.; Nativi, C.; Francesconi, O.; Gabrielli, G.; Canada, F. J.; Jimenez-Barbero, J.;
Roelens, S. Chem. Eur. J. 2010, 16, 414–418. (c) Abe, H; Takashima, S.;
Yamamoto, T.; Inouye, M. Chem. Commun. 2009, 2121–2123. (d) Abe, H.;
Horii, A.; Matsumoto, S.; Shiro, M.; Inouye, M. Org. Lett. 2008, 10, 2685–2688.
(e) Palde, P. B.; Gareiss, P. C.; Miller, B. L. J. Am. Chem. Soc. 2008, 130, 9566–
9573. (f) Klein, E.; Ferrand, Y.; Auty, E. K.; Davis, A. P. Chem. Commun. 2007,
2390–2392. (g) Nativi, C.; Cacciarini, M.; Francesconi, O.; Moneti, G.; Roelens,
S. Org. Lett. 2007, 9, 4685–4688. (h) Ferrand, Y.; Crump, M. P.; Davis, A. P.
Science 2007, 318, 619–622. (i) Klein, E.; Crump, M. P.; Davis, A. P. Angew.
Chem., Int. Ed. 2005, 44, 298–302. ( j) Abe, H.; Aoyagi, Y.; Inouye, M. Org. Lett.
2005, 7, 59–61. (k) Welti, R.; Abel, Y.; Gramlich, V.; Diederich, F. Helv. Chim.
Acta 2003, 86, 548–562. (l) Welti, R.; Diederich, F. Helv. Chim. Acta 2003, 86,
494–503. (m) Wada, K.; Mizutani, T.; Kitagawa, S. J. Org. Chem. 2003, 68,
€
831–838. (j) Mazik, M.; Konig, A. Eur. J. Org. Chem. 2007, 3271–3276.
(k) Mazik, M.; Cavga, H. Eur. J. Org. Chem. 2007, 3633–3638. (l) Mazik, M.;
~
€
5123–5131. (n) Segura, M.; Bricoli, B.; Casnati, A.; Munoz, E. M.; Sansone, F.;
Konig, A. J. Org. Chem. 2006, 71, 7854–7857. (m) Mazik, M.; Cavga, H.
Ungaro, R.; Vicent, C. J. Org. Chem. 2003, 68, 6296–6303. (o) Ishi-I, T.; Mateos-
Timoneda, M. A.; Timmerman, P.; Crego-Calama, M.; Reinhoudt, D. N.; Shinkai,
S. Angew. Chem., Int. Ed. 2003, 42, 2300–2305. (p) Tamaru, S.-i.; Shinkai, S.;
Khasanov, A. B.; Bell, T. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4972–4976.
(q) Ladomenou, K.; Bonar-Law, R. P. Chem. Commun. 2002, 2108–2109.
J. Org. Chem. 2006, 71, 2957–2963. (n) Mazik, M.; Kuschel, M.; Sicking, W.
Org. Lett. 2006, 8, 855–858. (o) Mazik, M.; Cavga, H.; Jones, P. G. J. Am.
Chem. Soc. 2005, 127, 9045–9052. (p) Mazik, M.; Radunz, W.; Boese, R.
J. Org. Chem. 2004, 69, 7448–7462. (q) Mazik, M.; Sicking, W. Tetrahedron
Lett. 2004, 45, 3117–3121. (r) Mazik, M.; Radunz, W.; Sicking, W. Org. Lett.
2002, 4, 4579–4582. (s) Mazik, M.; Sicking, W. Chem. Eur. J. 2001, 7, 664–
670. (t) Mazik, M.; Bandmann, H.; Sicking, W. Angew. Chem. 2000, 112,
562-565; Angew. Chem., Int. Ed. 2000, 39, 551-554.
ꢀ
(r) Bitta, J.; Kubik, S. Org. Lett. 2001, 3, 2637–2640. (s) Kral, V.; Rusin, O.;
Schmidtchen, F. P. Org. Lett. 2001, 3, 873–876. (t) Eblinger, F.; Schneider, H.-J.
Collect. Czech. Chem. Commun. 2000, 65, 667–672.
J. Org. Chem. Vol. 75, No. 19, 2010 6417