C O M M U N I C A T I O N S
Supplementary Scheme 3). O-GlcNAz enabled adenovirus, encoding
a GFP transgene in the E1 deleted region of the viral genome regulated
by a CMV promoter, was conjugated to alkyne-folate via CuAAC.
Mouse breast carcinoma cells (4T1), known to express moderate to
high levels of folate receptors30 and be naturally refractive to human
adenovirus, were cultured in folate-deficient media for 2 weeks. The
cells were infected with the folate-decorated virus at an MOI of 50,
24 h after replating. GFP expression was visualized 1 day after
infection. The results demonstrate a high level of GFP expression
within the 4T1 cells infected with the folate-labeled virus (Figure 3B).
Human Ad5 produced without azido sugar, but treated with the folate
reagent under CuAAC conditions, failed to produce significant
transgene expression. In addition, free folate completely abrogated
infection of folate-modified hAd5, indicating folate receptor meditated
gene delivery. Quantification of infection was assessed using a Synergy
2 fluoresence plate reader (excitation 485 ( 10 nm; emission 528 (
10 nm) which showed a 3-4-fold increase of GFP expression in cells
infected with metabolically and chemically modified virions versus
unmodified virus. Infection assayed in the presence of increasing free
folate concentration demonstrated dose-dependent transfection inhibi-
tion of 4T1 cells (Supplemental Figure S3).
culture condition, adenovirus production and purification as well as
experimental details of labeling, detection, characterization, and target-
ing of modified viruses. The material is available free of charge via
References
(1) Waehler, R.; Russell, S. J.; Curiel, D. T. Nat. ReV. Genet. 2007, 8, 573.
(2) Hedley, S.; Chen, J.; Mountz, J.; Li, J.; Curiel, D.; Korokhov, N.; Kovesdi,
I. Cancer Immunol. Immunother. 2006, 55, 1412.
(3) Matthews, Q.; Yang, P.; Wu, Q.; Belousova, N.; Rivera, A.; Stoff-Khalili,
M.; Waehler, R.; Hsu, H.-C.; Li, Z.; Li, J.; Mountz, J.; Wu, H.; Curiel, D.
Virol. J. 2008, 5, 98.
(4) Magnusson, M. K. H., S. S.; Henning, P.; Boulanger, P.; Lindholm, L.
J. Gene Med. 2002, 4, 356.
(5) Henning, P.; Lundgren, E.; Carlsson, M.; Frykholm, K.; Johannisson, J.;
Magnusson, M. K.; Tang, E.; Franqueville, L.; Hong, S. S.; Lindholm, L.;
Boulanger, P. J. Gen. Virol. 2006, 87, 3151.
(6) Croyle, M. A.; Yu, Q.-C.; Wilson, J. M. Hum. Gene Ther. 2000, 11, 1713.
(7) Kreppel, F.; Kochanek, S. Mol. Ther. 2007, 16, 16.
(8) Kreppel, F.; Gackowski, J.; Schmidt, E.; Stefan, K. Mol. Ther. 2005, 12,
107.
(9) Carrico, Z. M.; Romanini, D. W.; Mehl, R. A.; Francis, M. B. Chem.
Commun. 2008, 1205.
(10) Strable, E.; Prasuhn, D. E.; Udit, A. K.; Brown, S.; Link, A. J.; Ngo, J. T.;
Lander, G.; Quispe, J.; Potter, C. S.; Carragher, B.; Tirrell, D. A.; Finn,
M. G. Bioconjugate Chem. 2008, 19, 866.
(11) Gupta, S. S.; Raja, K. S.; Kaltgrad, E.; Strable, E.; Finn, M. G. Chem.
Commun. 2005, 4315.
In summary we have demonstrated that adenoviruses can be
chemoselectively labeled through a two-step process. Metabolic
labeling with azido sugars yields adenoviral particles with site-
specific placement of a chemically accessible azide without loss in
either viral production or infectivity. Subsequent chemical modi-
fication of these particles allows the facile appendage of a variety
of functionality from peptides to fluorophores to small molecules
targeting moieties. The remarkable ease and specificity of this
approach in combination with its nonperturbing nature make it
accessible to a wide range of researchers. Further, while the broad
application of adenoviral vectors makes them particularly attractive
targets, this approach is not limited to adenoviruses but is expected
to be generally applicable to the wide variety of viruses with
peripheral glycoproteins, including many oncolytic vectors currently
under development (retroviruses, lentiviruses, poxviruses, and
herpes viruses).
(12) Bruckman, M. A.; Kaur, G.; Lee, L. A.; Xie, F.; Sepulveda, J.; Breitenkamp,
R.; Zhang, X.; Joralemon, M.; Russell, T. P.; Emrick, T.; Wang, Q.
ChemBioChem 2008, 9, 519.
(13) Hong, V.; Presolski, S.; Ma, C.; Finn, M. Angew. Chem., Int. Ed. 2009,
48, 9879.
(14) Chang, P. V.; Prescher, J. A.; Hangauer, M. J.; Bertozzi, C. R. J. Am.
Chem. Soc. 2007, 129, 8400.
(15) Agard, N. J.; Bertozzi, C. R. Acc. Chem. Res. 2009, 42, 788.
(16) Christoph, V.; Stefan, K. J. Gene Med. 2004, 6, S164.
(17) Mullis, K. G.; Haltiwanger, R. S.; Hart, G. W.; Marchase, R. B.; Engler,
J. A. J. Virol. 1990, 64, 5317.
(18) Cauet, G.; Strub, J.-M.; Leize, E.; Wagner, E.; Dorsselaer, A. V.; Lusky,
M. Biochem. 2005, 44, 5453.
(19) Vocadlo, D. J.; Hang, H. C.; Kim, E.-J.; Hanover, J. A.; Bertozzi, C. R.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9116.
(20) Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS
Chem. Biol. 2006, 1, 644.
(21) Gupta, S. S.; Kuzelka, J.; Singh, P.; Lewis, W. G.; Manchester, M.; Finn,
M. G. Bioconjugate Chem. 2005, 16, 1572.
(22) Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 19.
(23) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007.
(24) Glasgow, J. N.; Everts, M.; Curiel, D. T. Cancer Gene Ther. 2006, 13,
830.
Acknowledgment. Support fort his work was provided by the
NSF (CBET-1080909, ISC) and the NIH (5R01AI041636, PH).
We would like to thank Dr. Guo-Wei Tian for support with
fluorescence imaging. We are grateful to Prof. Nicole Sampson and
Prof. Orlando Scha¨rer for help with instrumentation.
(25) Yamamoto, M.; Curiel, D. T. Mol. Ther. 2009, 18, 243.
(26) Jogler, C.; Hoffmann, D.; Theegarten, D.; Grunwald, T.; Uberla, K.;
Wildner, O. J. Virol. 2006, 80, 3549.
(27) Shashkova, E. V.; May, S. M.; Barry, M. A. Virology 2009, 394, 311.
(28) Low, P. S.; Kularatne, S. A. Curr. Opin. Chem. Biol. 2009, 13, 256.
(29) Oh, I. K.; Mok, H.; Park, T. G. Bioconjugate Chem. 2006, 17, 721.
(30) Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D.
J. Inorg. Biochem. 2004, 98, 1625.
Supporting Information Available: Details of azido sugar sub-
strates and targeting folate molecule synthesis, peptide synthesis, cell
JA104547X
9
J. AM. CHEM. SOC. VOL. 132, NO. 39, 2010 13617