C O M M U N I C A T I O N S
Scheme 2
these products are amenable to subsequent utilization of the boryl
functionality for carbon-carbon bond formation. Such new variants
of the 1,1-carboboration reaction14 are well-suited for opening new
general pathways in carbon-carbon bond-activation chemistry.
Acknowledgment. Financial support from the Deutsche
Forschungsgemeinschaft and the Fonds der Chemischen Industrie
is gratefully acknowledged. C.C. thanks the Alexander von Hum-
boldt Foundation for a stipend.
Supporting Information Available: Text and figures giving further
experimental and spectroscopic details and CIF files giving crystal-
lographic data for 2b, 3, and 4b. This material is available free of charge
are used as alkenyl reagents in coupling reactions for the preparation
of substituted alkenes.8a The products 2 all contain a reactive boryl
substituent. The newly formed alkenylborane moiety in these
compounds can be synthetically utilized for subsequent carbon-
carbon bond formation in a Pd-catalyzed reaction that is related to
Suzuki-Miyaura-type coupling.8c Thus, we treated the 1,1-car-
boboration product 2a with phenyl bromide at 70 °C in aqueous
THF in the presence of sodium hydroxide base and ∼10 mol %
Pd(PPh3)4 catalyst. This led to C-C coupling that resulted in the
formation of tetrasubstituted olefin 4a, which we isolated in 50%
yield. Similarly, the Pd-catalyzed arylation of the 1,1-carboboration
product 2d with phenyl iodide gave the cross-coupled product 4b
in good yield (see Scheme 3). X-ray crystal structure analysis of
4b showed the geminal pair of p-tolyl substituents at C1 of the
double bond, which originated from the 1,1-carboboration reaction
of bis(p-tolyl)acetylene with 1b, and the phenyl and methyl groups
on C2 [C1-C2, 1.349(2) Å; ∑deg(C1) ) 360°; ∑deg(C2) ) 360°;
see Figure 2 right].
References
(1) ActiVation and Functionalization of C-H Bonds; Goldberg, K. I., Goldman,
A. S., Eds.; ACS Symposium Series 885; American Chemical Society:
Washington, DC, 2004.
(2) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46-76; Angew.
Chem. 2010, 122, 50-81.
(3) (a) Jones, W. D. Nature 1993, 364, 676–677. Recent examples: (b) Chaplin,
A. B.; Weller, A. S. Organometallics 2010, 29, 2332–2342. (c) Li, T.;
Garc´ıa, J. J.; Brennessel, W. W.; Jones, W. D. Organometallics 2010, 29,
2430–2445. (d) Gunay, A.; Jones, W. D. J. Am. Chem. Soc. 2007, 129,
8729–8735.
(4) (a) Wang, C.; Erker, G.; Kehr, G.; Wedeking, K.; Fro¨hlich, R. Organo-
metallics 2005, 24, 4760–4773, and references cited therein. (b) Massey,
A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245–250. (c) Massey,
A. G.; Park, A. J.; Stone, F. G. A. Proc. Chem. Soc., London 1963, 212–
213.
(5) (a) Wrackmeyer, B. Heteroat. Chem. 2006, 17, 188–208, and references
cited therein. (b) Wrackmeyer, B. Coord. Chem. ReV. 1995, 145, 125–
156. Selected examples: (c) Wrackmeyer, B.; Kenner-Hofmann, B. H.;
Milius, W.; Thoma, P.; Tok, O. L.; Herberhold, M. Eur. J. Inorg. Chem.
2006, 101–108. (d) Wrackmeyer, B.; Kehr, G.; Sebald, A.; Ku¨mmerlen, J.
Chem. Ber. 1992, 125, 1597–1603. (e) Wrackmeyer, B.; Kundler, S.; Milius,
W.; Boese, R. Chem. Ber. 1994, 127, 333–342. (f) Wrackmeyer, B.; Kehr,
G.; Boese, R. Angew. Chem. 1991, 103, 1374-1376; Angew. Chem., Int.
Ed. Engl. 1991, 30, 1370-1372. (g) Wrackmeyer, B.; Horchler, K.; Boese,
R. Angew. Chem. 1989, 101, 1563-1565; Angew. Chem., Int. Ed. Engl.
1989, 28, 1500-1502.
Scheme 3
(6) (a) Dureen, M. A.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 8396–
8397. (b) Mo¨mming, C. M.; Fro¨mel, S.; Kehr, G.; Fro¨hlich, R.; Grimme,
S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280–12289.
(7) For preparation details, see the Supporting Information. Also see: Spence,
R. E. v. H.; Piers, W. E.; Sun, Y.; Parvez, M.; MacGillivray, L. R.;
Zaworotko, M. J. Organometallics 1998, 17, 2459–2469.
(8) Selected examples: (a) Flynn, A. B.; Ogilvie, W. W. Chem. ReV. 2007,
107, 4698–4745. (b) Pellegrinet, S. C.; Silva, M. A.; Goodman, J. M. J. Am.
Chem. Soc. 2001, 123, 8832–8837, and references cited therein. (c) Miyaura,
N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483. (d) Colberg, J. C.; Rane,
A.; Vaquer, J.; Soderquist, J. A. J. Am. Chem. Soc. 1993, 115, 6065–6071,
and references cited therein.
(9) Selected examples: (a) Pelter, A.; Pardasani, R. T.; Pardasani, P. Tetrahedron
2000, 56, 7339–7369. (b) Kropp, M. A.; Baillargeon, M.; Park, K. M.;
Bhamidapaty, K.; Schuster, G. B. J. Am. Chem. Soc. 1991, 113, 2155–
2163.
(10) Kolpin, K. B.; Emslie, D. J. H. Angew. Chem. 2010, 122, 2776-2779;
Angew. Chem., Int. Ed. 2010, 49, 2716-2719.
(11) Chen, C.; Kehr, G.; Fro¨hlich, R.; Erker, G. Chem. Commun. 2010, 46,
3580–3582.
1,1-Carboboration reactions had been observed to rapidly proceed
upon treatment of various main-group- or transition-metal-
substituted alkynes with boranes,5,11 but they have rarely been
described in cases of simple organic acetylenes.12,13 However, this
unique topology of the 1,1-carboboration sequence is especially
attractive starting from simple internal alkynes that bear conven-
tional organic substituents.
The well-defined and very selective rearrangement sequence
observed here leads to trisubstituted alkenylboranes that, as we have
shown, represent interesting new boron Lewis acids. In addition,
(12) (a) Jiang, C.; Blacque, O.; Berke, H. Organometallics 2010, 29, 125–133.
(b) Binnewirtz, R.-J.; Klingenberger, H.; Welte, R.; Paetzold, P. Chem.
Ber. 1983, 116, 1271–1284. See also: (c) Chen, C.; Eweiner, F.; Wibbeling,
B.; Fröhlich, R.; Senda, S.; Ohki, Y.; Tatsumi, K.; Grimme, S.; Kehr, G.;
Erker, G. Chem. Asian J. 2010, DOI: 10.1002/asia.201000189.
(13) For a comparision, see: Fan, C.; Piers, W. E.; Parvez, M.; McDonald, R.
Organometallics [Online early access]. DOI: 10.1021/om100334r. Published
Online: June 18, 2010.
(14) The C-C bond-activating 1,1-carboboration reaction described here
resembles a topological reversal of the Fritsch-Buttenberg-Wiechell
rearrangement. See: Jahnke, E.; Tykwinski, R. R. Chem. Commun. 2010,
46, 3235–3249.
JA106365J
9
J. AM. CHEM. SOC. VOL. 132, NO. 39, 2010 13595