5202
M. Résimont, J.-F. Liégeois / Bioorg. Med. Chem. Lett. 20 (2010) 5199–5202
but this relationship is not always found among homologous
series.15
research into more selective ligands is required to explore and clar-
ify the physiology of different neuronal systems.
Although bioisosteric replacement of the carboxamide by a sul-
phonamide strongly modified the spatial orientation of the side
chain as we previously reported,16 the impact of such modification
is differentially observed. In the present work, the presence of this
sulphonamide moiety was favourable for some interactions. The
success of this chemical modification was varied in the literature.
The hypoglycaemic sulfonyl isostere of glybenclamide was found
to be more potent,17 however sulfonyl isosteres of orthopramides
did not interact with D2 and 5-HT2 receptors and lost the prokinet-
ic activity of the reference compounds.16 The sulphonamide moiety
is also frequently found in molecules interacting with a high affin-
ity for 5-HT7 receptors but usually these molecules also possess a
higher 5-HT1A receptor affinity.7,18–20
In conclusion, the systematic nature of the present study gives
an interesting overview of the impact of these two chemical mod-
ifications of piperazine-alkyl-naphthamides on the interactions
with a number of receptors implicated in psychiatric disorders. It
is clear that further investigation of the quantitative structure–
activity relationship (QSAR) of these compounds is required, as
all biological data has been reported by one group6,8,9 this would
provide an improved binding profile of such simple molecules in
the context of developing pharmacological tools. The biological
evaluation will be extended in two directions. Firstly, the determi-
nation of their binding affinity for receptors such as 5-HT2A and
5-HT7 that have been frequently implicated in CNS disorders
should be done. Secondly, since bioisosterism or homologation
might have important effects on functional behaviours, testing of
these compounds in functional assays either in vitro or in electro-
physiological bioassays should be informative. In addition, further
study of different molecules like pentyl or hexyl analogues with a
multi-receptor binding profile should be carried out using behav-
ioural models to detect potential antipsychotic effects. The major
drawback detected during in vitro binding investigations is the im-
pact of lipophilicity in terms of solubility for long linker com-
pounds. The preparation of compounds will need an appropriate
vehicle, so further chemical developments should be taken into ac-
count to limit problems associated with excessive lipophilicity, and
reduce possible excessive fat storage when chronically adminis-
tered. Finally, such data confirmed that several current pharmaco-
logical tools are not as selective as previously believed and further
Acknowledgements
The technical assistance of Y. Abrassart and S. Counerotte for IR
measurements and elemental analyses respectively is gratefully
acknowledged. Supported in part by grants of the Fonds de la
Recherche Scientifique-FNRS (F.R.S.-FNRS) and the ‘Fonds Spéciaux
pour la Recherche’ of the University of Liège (Belgium). J.-F.L is a
Research Director of the F.R.S.-FNRS.
References and notes
1. Roth, B. L.; Sheffler, D. L.; Kroeze, W. K. Nat. Rev. Drug Disc. 2004, 3, 353.
2. Marino, M. J.; Knutsen, L. J. S.; Williams, M. J. Med. Chem. 2008, 51, 1077.
3. Ichikawa, J.; Ishii, I.; Bonaccorso, S.; Fowler, W. L.; O’Laughlin, I. A.; Meltzer, H.
Y. J. Neurochem. 2001, 76, 1521.
4. Hertel, P.; Fagerquist, M. V.; Svensson, T. H. Science 1999, 286, 105.
5. Chemel, B. R.; Roth, B. L.; Armbruster, B.; Watts, V. J.; Nichols, D. E.
Psychopharmacology (Berlin) 2006, 188, 244.
6. Graulich, A.; Léonard, M.; Résimont, M.; Huang, X.-P.; Roth, B. L.; Liégeois, J.-F.
Aust. J. Chem. 2010, 63, 56.
7. Yoon, J.; Yoo, E.; Kim, J.-Y.; Pae, A. N.; Rhim, H.; Park, W.-K.; Kong, J. Y.; Park
Choo, H.-Y. Bioorg. Med. Chem. 2008, 16, 5405.
8. Carato, P.; Graulich, A.; Jensen, N.; Roth, B. L.; Liégeois, J.-F. Bioorg. Med. Chem.
Lett. 2007, 17, 1565.
9. Carato, P.; Graulich, A.; Jensen, N.; Roth, B. L.; Liégeois, J.-F. Bioorg. Med. Chem.
Lett. 2007, 17, 1570.
10. Rodriguez, F.; Rozas, I.; Ortega, J. E.; Erdozain, A. M.; Meana, J. J.; Calldo, L. F. J.
Med. Chem. 2009, 52, 601.
11. Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.; Wermuth, C. G.;
Schwartz, J.-C.; Everitt, B. J.; Sokoloff, P. Nature 1999, 400, 371.
12. Wicke, K.; Garcia-Ladona, J. Eur. J. Pharmacol. 2001, 424, 85.
13. Campiani, G.; Butini, S.; Trotta, F.; Fattorusso, C.; Catalanotti, B.; Aiello, F.;
Gemma, S.; Nacci, V.; Novellino, E.; Ann Stark, J.; Cagnotto, A.; Fumagalli, E.;
Carnovali, F.; Cervo, L.; Mennini, T. J. Med. Chem. 2003, 46, 3822.
14. Hackling, A.; Ghosh, R.; Perachon, S.; Mann, A.; Höltje, H.-D.; Wermuth, C. G.;
Schwartz, J.-C.; Sippl, W.; Sokoloff, P.; Stark, H. J. Med. Chem. 2003, 46, 3883.
15. Wermuth, C. G. The Practice of Medicinal Chemistry. In Wermuth, C. G., Ed.;
Academic Press, 2000; p 203.
16. Liégeois, J.-F.; Dive, G.; Dupont, L.; Delarge, J. Helv. Chim. Acta 1991, 74, 1764.
17. Fournier, J.-P.; Moreau, R. C.; Narcisse, G.; Choay, P. Eur. J. Med. Chem. 1982, 17,
81.
18. Bojarski, A. J.; Duszyn´ ska, B.; Kolaczkowski, M.; Kowalski, P.; Kowalska, T.
Bioorg. Med. Chem. Lett. 2004, 23, 5863.
19. Medina, R. A.; Sallander, J.; Benhamu, B.; Porras, E.; Campillo, M.; Pardo, L.;
Lopez-Rodriguez, M. L. J. Med. Chem. 2009, 52, 2384.
20. Yoo, E.; Yoon, J.; Pae, A. N.; Rhim, H.; Park, W.-K.; Kong, J. Y.; Park Choo, H.-Y.
Bioorg. Med. Chem. 2010, 18, 1665.