ORGANIC
LETTERS
2010
Vol. 12, No. 20
4548-4551
Decarbonylative Cycloaddition of
Phthalimides with 1,3-Dienes
Kyohei Fujiwara, Takuya Kurahashi,* and Seijiro Matsubara*
Department of Material Chemistry, Graduate School of Engineering, Kyoto UniVersity,
Kyoto 615-8510, Japan
tkuraha@orgrxn.mbox.media.kyoto-u.ac.jp; matsub@orgrxn.mbox.media.kyoto-u.ac.jp
Received August 6, 2010
ABSTRACT
The decarbonylative cycloadditions of phthalimides with 1,3-dienes were performed by using nickel catalyst. The reactions afford
3-vinyldihydroisoquinolones regioselectively with respect to both 1,3-dienes and phthalimides.
The transition-metal-catalyzed reactions, which provide
structurally diverse heterocyclic compounds by replacing a
part of a readily available heterocyclic compound with
another molecule in a single step, are rare but represent a
straightforward and powerful synthetic methodology.1-5
Herein, we report our results of decarbonylative cycloaddi-
tions of phthalimides with 1,3-dienes, which provide 3-vi-
nyldihydroisoquinolones regioselectively.6 The reaction rep-
resents an unprecedented replacement reaction of a carbon
monoxide by a C-C double bond.
Initially, we examined the decarbonylative cycloaddition
of N-2-pyridylphthalimide (1a) with 1,2-dimethylenecyclo-
hexane (2a) using Ni(cod)2. After screening of various
ligands, PMe3 was found to give the highest yield (78%,
Table 1, entries 1-4). Trace amounts of 3aa were obtained
in the cases where N-heterocyclic carbene ligands such as
IPr or IMes was used in place of PMe3. In other solvents,
such as acetonitrile, tetrahydrofuran, and toluene, yields were
even lower (entries 5-7). While the reaction of N-phe-
nylphthalimide (1b) with 2a did not give any products (entry
8), electron-deficient N-arylphthalimides react with diene
efficiently. Indeed, the reaction of 2a with N-perfluorophe-
nylphthalimide (1c) successfully provided 3ca in 59% yield
(entry 9). The reactions of 2a with N-diazinephthalimides
1d and 1e afford the products in good yields (entries 10 and
11). The highest yield was obtained when N-pyrrolylphthal-
imide 1f was employed, and the corresponding cycloadduct
3fa was isolated in 99% yield (entry 12).
(1) For Pd-catalyzed cycloadditions via elimination of CO2, see: (a)
Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129,
12356. (b) Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118. (c)
Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T. J. Am. Chem.
Soc. 2008, 130, 16174. (d) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem.
Soc. 2007, 129, 14866. (e) Shintani, R.; Tsuji, T.; Park, S.; Hayashi, T.
J. Am. Chem. Soc. 2010, 132, 7508. (f) Shintani, R.; Murakami, M.; Hayashi,
T. Org. Lett. 2009, 11, 457. (g) Shintani, R.; Hayashi, S.; Murakami, M.;
Takeda, M.; Hayashi, T. Org. Lett. 2009, 11, 3754
.
(2) For Ni-catalyzed cycloadditions via elimination of CO, see: (a) Kajita,
With the optimized conditions in hand, we next investi-
gated the use of other 1,3-dienes in this reaction (Scheme
Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2008, 130, 6058. (b)
Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2008, 130, 17226
.
(3) For Ni-catalyzed cycloadditions via elimination of N2, see: (a) Miura,
T.; Yamauchi, M.; Murakami, M. Org. Lett. 2008, 10, 3085. (b) Yamauchi,
M.; Morimoto, M.; Miura, T.; Murakami, M. J. Am. Chem. Soc. 2010, 132,
54. (c) Miura, T.; Yamauchi, M.; Kosaka, A.; Murakami, M. Angew. Chem.,
Int. Ed. 2010, 49, 4955. (d) Miura, T.; Morimoto, M.; Yamauchi, M.;
(6) The isoquinolone skeleton is widely found in various natural products
and medicinal drugs that exhibit a broad range of biological properties.
For example, see: (a) Le, T. N.; Gang, S. G.; Cho, W.-J. J. Org. Chem.
2004, 69, 2768. (b) Ruchelman, A. L.; Houghton, P. J.; Zhou, N.; Liu, A.;
Liu, L. F.; LaVoie, E. J. J. Med. Chem. 2005, 48, 792. (c) Asano, A.;
Kitamura, S.; Ohra, T.; Aso, K.; Igata, H.; Tamura, T.; Kawamoto, T.;
Tanaka, T.; Sogabe, S.; Matsumoto, S.; Yamaguchi, M.; Kimura, H.; Itoh,
F. Bioorg. Med. Chem. 2008, 16, 4715.
Murakami, M. J. Org. Chem. 2010, 75, 5359
(4) For Ni-catalyzed cycloadditions via elimination of CO2, see: Yoshino,
Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009, 131, 7494
(5) For Ni-catalyzed cycloadditions via elimination of isocyanate, see:
Yoshino, Y.; Kurahashi, T.; Matsubara, S. Chem. Lett. 2010, 39, 896
.
.
.
10.1021/ol101842y 2010 American Chemical Society
Published on Web 09/23/2010