C O M M U N I C A T I O N S
×K1-RNT as it has never been observed for bicyclic G∧C
derivatives such as K116c,18 or nonassembled ×K1. Because this
band is narrow and red-shifted and grew over time and because it
decreased with increasing temperature (Figures S3, S4), dilution
(Figures S5, S6),19 or titration with TFA (data not shown), we
propose that ×K1 modules assumed a J-type arrangement1-3 within
the RNTs.
In summary, here we describe the design, synthesis, and
characterization of a new class of water-soluble RNTs from a
tricyclic self-assembling module (×K1). UV-vis and CD experi-
ments revealed interesting optical properties. In particular, the
formation of highly ordered J-type RNTs suggests long-range
intermodular electronic communication relative to the parent RNTs
(derived from 2). Detailed photophysical studies to determine the
size of the coherent domain of the J-aggregates within the ×K1-
RNTs are underway. Our results suggest also that by further
extending the ring system of the G∧C motif, we should be able to
realize an electronically conducting RNT with tremendous practical
and fundamental potential.4-13
Second, the growth of the J-band is associated with the growth
of a couplet centered on the same λmax (388 nm) (Figures 3B,
S2). Variable temperature UV-vis and CD showed that this
couplet is associated with the supramolecular organization of
×K1-RNT, as it disappears with heating and grows upon cooling
(Figure S4).
Acknowledgment. We thank NSERC, NRC, and the University
Third, a subtle hypochromic effect (ca. 8%) was observed
over 7 days (Figure 3A) whereas a pronounced hyperchromic
effect (up to ca. 50%) was recorded upon thermally induced
disassembly (Figure S5).19 While this result suggests that RNT
formation has already substantially progressed prior to the initial
measurements (i.e., within minutes), the UV-vis and CD
profiles, notably the appearance and growth of the red-shifted
band along with the CD couplet, suggest that the formation of
J-type RNTs proceeds in at least two stages: the first step (within
minutes) leading to rapid formation of RNTs and the second
(within days) during which ×K1 modules adopt a particularly
favorable supramolecular arrangement for exciton coupling
within the RNT construct. We refer to these states as confor-
mational states I and II (CS-I, CS-II). As evidenced by time-
dependent SEM,19 the shape, dimension, and hierarchy/
aggregation states of ×K1-RNTs were the same in CS-I and
CS-II. However, the transition from CS-I to CS-II clearly has a
dramatic effect on the relative orientation of the transition dipoles
of the self-assembling modules and their exciton delocalization.3
of Alberta for supporting this program.
Supporting Information Available: Synthetic procedures for ×K1;
UV-vis, CD and fluorescence studies; SEM, TEM, AFM, EH, QPt
and EFTEM procedures and studies; and computational methods. This
References
(1) Scheibe, G. Angew. Chem. 1936, 49, 563.
(2) Jelley, E. E. Nature 1936, 138, 1009.
(3) (a) Mo¨bius, D. AdV. Mater. 1995, 7, 437. (b) Kuhn, H.; Kuhn, C. In
J-Aggregates; Kobayashi, T., Ed.; World Scientific: Singapore, 1996;
Chapter 1. (c) Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.;
Behera, G. B. Chem. ReV. 2000, 100, 1973.
(4) Kobayashi, T., Ed. J-Aggregates; World Scientific: Singapore, 1996.
(5) (a) Lin, H.; Camacho, R.; Tian, Y.; Kaiser, T. E.; Wu¨rthner, F.; Scheblykin,
I. G. Nano Lett. 2010, 10, 620. (b) Jin, W.; Yamamoto, Y.; Fukushima,
T.; Ishii, N.; Kim, J.; Kato, K.; Takata, M.; Aida, T. J. Am. Chem. Soc.
2008, 130, 9434. (c) Law, K. -Y. Chem. ReV. 1993, 93, 449. (d) Eisele,
D. M.; Knoester, J.; Kirstein, S.; Rabe, J. P.; Vanden Bout, D. A. Nat.
Nano. 2009, 4, 658. (e) Borsenberger, P. M.; Chowdry, A.; Hoesterey, D. C.;
Mey, W. J. Appl. Phys. 1978, 44, 5555.
(6) (a) Zheng, J.; Qiao, W.; Wan, X.; Gao, J. P.; Wang, Z. Y. Chem. Mater.
2008, 20, 6163. (b) Sasaki, F.; Kobayashi, S. Appl. Phys. Lett. 1993, 63,
2887. (c) Tian, M.; Tatsuura, S.; Furuki, M.; Sato, Y.; Iwasa, I.; Pu, L. S.
J. Am. Chem. Soc. 2003, 125, 348. (d) Adhikari, R. M.; Shah, B. K.;
Palayangoda, S. S.; Neckers, D. C. Langmuir 2009, 25, 2402.
(7) (a) Wang, Y. Chem. Phys. Lett. 1986, 126, 209. (b) Wang, Y. J. Opt. Soc.
Am. B 1991, 8, 981. (c) Kobayashi, S. Mol. Cryst. Liq. Cryst. 1992, 217,
77.
(8) Tischler, J. R.; Bradley, M. S.; Bulovic, V. Opt. Lett. 2006, 31, 2045.
(9) (a) Tischler, J. R.; Bradley, M. S.; Zhang, Q.; Atay, T.; Nurmikko, A.;
Bulovic, V. Org. Electron. 2007, 8, 94. (b) Walker, B. J.; Nair, G. P.;
Marshall, L. F.; Bulovic, V.; Bawendi, M. G. J. Am. Chem. Soc. 2009,
131, 9624.
(10) James, T. H., Ed. The Theory of the Photographic Process; Macmillan:
New York, 1977.
To further establish the J-type nature of ×K1-RNTs, steady-
state fluorescence spectroscopy was carried out. Three excitation
wavelengths were used to observe the changes in emission upon
transition from CS-I to CS-II, namely the λmax of CS-I (356 nm),
the isosbestic point (369 nm), and the λmax of the J-band (388
nm) for CS-II. The time-dependent emission spectra resulting
from excitation at 356 and 369 nm showed a decrease in
fluorescence intensity and a change in band shape due to the
growth of the narrow J-band fluorescence peak at 393 nm
(Figures S7, S8). Excitation of the J-band at 388 nm minimizes
the absorption of CS-I and shows growth of the J-band
fluorescence emission at 393 nm (Figure 3C). The absorption
and emission spectra are nearly mirror image and the Stokes
shift for the J-band is only 5 nm, consistent with the formation
of J-type aggregates.22 In addition, the emission of CS-II (relative
to CS-I) is more intense possibly as a result of an increased
quantum yield of the J-aggregate.
(11) (a) Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou,
A.; Abe, Y.; Suga, S.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2003,
80, 47. (b) Kawasaki, M.; Aoyama, S. Chem. Commun. 2004, 988. (c)
Tameev, A. R.; Vannikov, A. V.; Schoo, H. F. M. Thin Solid Films 2004,
451/452, 109. (d) Meng, F.; Chen, K.; Tian, H.; Zuppiroli, L.; Nuesch, F.
Appl. Phys. Lett. 2003, 82, 3788. (e) Steiger, R.; Pugin, R.; Heier, J. Colloids
Surf., B 2009, 74, 484. (f) Zhang, Q.; Atay, T.; Tischler, J. R.; Bradley,
M. S.; Bulovic, V.; Nurmikko, A. V. Nat. Nano. 2007, 2, 555. (g) Wang,
X.-F.; Kitao, O.; Zhou, H.; Tamiaki, H.; Sasaki, S. J. Phys. Chem. C 2009,
113, 7954. (h) Spitler, M. T.; Parkinson, B. A. Acc. Chem. Res. 2009, 42,
2017.
(12) Lagoudakis, P. G.; de Souza, M. M.; Schindler, F.; Lupton, J. M.; Feldmann,
J. Phys. ReV. Lett. 2004, 93, 257401–1.
(13) Whitten, D. G.; Achyuthan, K. E.; Lopez, G. P.; Kim, O.-K. Pure Appl.
Chem. 2006, 78, 2313.
As is the case for J-type aggregates, the remarkably strong
CD couplet observed for ×K1 coincides with the newly formed
red-shifted J-band and is likely due to coupling of stronger
electric dipole transitions between adjacent molecules in the
RNTs.21 This may stem from the higher polarizability, larger π
electron system, and supramolecular arrangement of the dipole
moments of ×K1 relative to its parent module 2, whose effect
is 3-fold: (a) it increases the hydrophobic/amphiphilic character
of ×K1, which results in stronger assemblies in water and polar
solvents; (b) it promotes stronger and larger π-π interactions,
which are favorable to establishing optimal interchromophoric
distances and geometries for exciton coupling; and (c) it increases
electronic delocalization.
(14) Vanburgel, M.; Wiersma, D. A.; Duppen, K. J. Chem. Phys. 1995, 102,
20.
(15) (a) Lehn, J.-M. Science 2002, 295, 2400. (b) Whitesides, G. M.; Simanek,
E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon,
D. M. Acc. Chem. Res. 1995, 28, 37. (c) Cornelissen, J. J. L. M.; Rowan,
A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. ReV. 2001, 101,
4039. (d) Lawrence, D. S.; Jiang, T.; Levett, M. Chem. ReV. 1995, 95,
2229. (e) Prins, L J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem.,
Int. Ed. 2001, 40, 2382. (f) Shimizu, T.; Masuda, M.; Minamikawa, H.
Chem. ReV. 2005, 105, 1401.
(16) (a) Marsh, A.; Silvestri, M.; Lehn, J.-M. Chem. Commun. 1996, 1527. (b)
Mascal, M.; Hext, N. M.; Warmuth, R.; Moore, M. H.; Turkenburg, J. P.
Angew. Chem., Int. Ed. Engl. 1996, 35, 2204. (c) Fenniri, H.; Mathivanan,
P.; Vidale, K. L.; Sherman, D. M.; Hallenga, K.; Wood, K. V.; Stowell,
J. G. J. Am. Chem. Soc. 2001, 123, 3854.
(17) (a) Beingessner, R.; Deng, B.-L.; Fanwick, P. E.; Fenniri, H. J. Org. Chem.
2008, 73, 931. (b) Tikhomirov, G.; Oderinde, M.; Makeiff, D.; Mansouri,
9
15138 J. AM. CHEM. SOC. VOL. 132, NO. 43, 2010