and LUMO+1 are predominately contributed by the 2,2¢-bpy (p*)
moiety in the L ligand. The LUMO+5 and LUMO+6 are resident
on both the L and ppy ligands.
3ILCT character (weakly emissive) in complex 1 to predominant
3LLCT/3MLCT (highly emissive) states in the 1-thiol adduct.
As shown in Table S2 (ESI†), although a calculated low-energy
absorption at 513 nm with a low oscillator strength of 0.0066
exhibits 1MLCT/1LLCT character, the much stronger low-energy
absorption at 474 nm with the highest oscillator strength of 0.4502
due to HOMO→LUMO is primarily featured with intraligand
charge transfer (ILCT) transition from the HOMO (p) resident
on the fragment -C(O)C6H4N(C2H5)2 to the LUMO (p*) localized
on the 2,2¢-bipyridyl moiety in the functionalized 2,2¢-bipyridyl
ligand L. The absorption at 379 nm from HOMO→LUMO+1
also displays 1ILCT character. The high-energy absorption at
287 nm from HOMO→LUMO+5, HOMO-6→LUMO+1, and
HOMO→LUMO+6 can be assigned mainly to a 1ILCT transition
together with some contribution from 1MLCT/1LLCT states. As
indicated in Fig. S16 (ESI†), the calculated absorption character
(bars) accords well with the measured UV–vis absorption spec-
trum of 1 in DMF solution.
In order to explore the influence on the UV–vis absorption
character by the 1,4-addition of Cys to a,b-unsaturated ketone
of the L ligand in complex 1, time-dependent DFT (TD-DFT)
calculation was also performed to estimate the corresponding
transition energy of the adduct 1-Cys. As listed in Table S4
(ESI†), the calculated lowest energy absorption at 462 nm with an
oscillator strength of 0.0006 due to HOMO-1→LUMO transition
is typical of 1MLCT and 1LLCT states. Although a weaker absorp-
tion at 402 nm with a lower oscillator strength of 0.0003 due to
HOMO→LUMO transition is mainly featured with 1ILCT state,
the stronger absorption at 361 nm with higher oscillator strength
of 0.1079 due to HOMO-2→LUMO and HOMO-1→LUMO+3
transitions is ascribable to substantial 1MLCT/1LLCT character.
The calculated (red bars) absorptions in DMF media by the
TD-DFT calculation coincide well with the measured (blue line)
UV–vis spectrum of the adduct 1-Cys in DMF–HEPES buffer
solution (50 mM, pH 7.2, 4 : 1, v/v) as depicted in Fig. S17
(ESI†). Consequently, the DFT computational results suggest
that a significant blue shift of the low-energy absorption and a
remarkable emission enhancement from 1 to 1-Cys is most likely
induced by a conversion of the primary ILCT transition in 1 to
the predominant MLCT/LLCT states in the adduct 1-Cys upon
1,4-addition of Cys to a,b-unsaturated ketone in complex 1.
Acknowledgements
We thank the NSFC (20625101, 20821061, 20931006, and
U0934003), the 973 project (2007CB815304) from MSTC, and
NSF of Fujian Province (2008I0027 and 2008F3117) for financial
support.
References
1 (a) Z. A. Wood, E. Schro¨der, J. Robin Harris and L. B. Poole, Trends
Biochem. Sci., 2003, 28, 32; (b) J. D. Finkelstein and J. J. Martin, Int. J.
Biochem. Cell Biol., 2000, 32, 385.
2 S. Shahrokhian, Anal. Chem., 2001, 73, 5972.
3 S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg, R. B.
D’Agostino, P. W. F. Wilson and P. A. Wolf, N. Engl. J. Med., 2002,
346, 476.
4 (a) F. Tanaka, N. Mase and C. F. B. III, Chem. Commun., 2004, 1762;
(b) M. Zhang, M. X. Yu, F. Y. Li, M. W. Zhu, M. Y. Li, Y. H. Gao, L.
Li, Z. Q. Liu, J. P. Zhang, D. Q. Zhang, T. Yi and C. H. Huang, J. Am.
Chem. Soc., 2007, 129, 10322; (c) J. Bouffard, Y. Kim, T. M. Swager,
R. Weissleder and S. A. Hilderbrand, Org. Lett., 2008, 10, 37; (d) T.
Matsumoto, Y. Urano, T. Shoda, H. Kojima and T. Nagano, Org. Lett.,
2007, 9, 3375; (e) Y. Zeng, G. Zhang, D. Zhang and D. Zhu, Tetrahedron
Lett., 2008, 49, 7391; (f) L. Duan, Y. Xu, X. Qian, F. Wang, J. Liu and
T. Cheng, Tetrahedron Lett., 2008, 49, 6624; (g) X. Chen, Y. Zhou, X.
Peng and J. Yoon, Chem. Soc. Rev., 2010, 39, 2120.
5 (a) D. L. Ma, W. L. Wong, W. H. Chung, F. Y. Chan, P. K. So, T. S.
Lai, Z. Y. Zhou, Y. C. Leung and K. Y. Wong, Angew. Chem., Int. Ed.,
2008, 47, 3735; (b) J. N. Demas and B. A. DeGraff, Coord. Chem. Rev.,
2001, 211, 317; (c) K. M. C. Wong and V. W. W. Yam, Coord. Chem.
Rev., 2007, 251, 2477; (d) Y. Fan, Y. M. Zhu, F. R. Dai, L. Y. Zhang and
Z. N. Chen, Dalton Trans., 2007, 3885; (e) Q. Z. Yang, L. Z. Wu, H.
Zhang, B. Chen, Z. X. Wu, U. P. Zhang and C. H. Tung, Inorg. Chem.,
2004, 43, 5195; (f) K. Huang, H. Yang, Z. Zhou, H. Chen, F. Li, T. Yi
and C. Huang, Inorg. Chim. Acta, 2009, 362, 2577.
6 J. A. G. Williams, A. J. Wilkinson and V. L. Whittle, Dalton Trans.,
2008, 2081.
7 (a) Q. Zhao, F. Y. Li, S. J. Liu, M. X. Yu, Z. Q. Liu, T. Yi and C. H.
Huang, Inorg. Chem., 2008, 47, 9256; (b) T. Liu, H. X. Zhang, X. Zhou,
Q. C. Zheng, B. H. Xia and Q. J. Pan, J. Phys. Chem. A, 2008, 112, 8254.
8 Y. Amao, Y. Ishikawa and I. Okura, Anal. Chim. Acta, 2001, 445, 177.
9 (a) K. K. W. Lo and J. S. Y. Lau, Inorg. Chem., 2007, 46, 700; (b) K. K.
W. Lo, J. S. Y. Lau, D. K. K. Lo and L. T. L. Lo, Eur. J. Inorg. Chem.,
2006, 4054; (c) K. K. W. Lo, P. K. Lee and J. S. Y. Lau, Organometallics,
2008, 27, 2998; (d) K. K. W. Lo, K. Y. Zhang, C. K. Chung and K. Y.
Kwok, Chem.–Eur. J., 2007, 13, 7110; (e) K. K. W. Lo, K. Y. Zhang, S.
K. Leung and M. C. Tang, Angew. Chem., Int. Ed., 2008, 47, 2213.
10 (a) M. L. Ho, Y. M. Cheng, L. C. Wu, P. T. Chou, G. H. Lee, F. C.
Hsu and Y. Chi, Polyhedron, 2007, 26, 4886; (b) Q. Zhao, T. Y. Cao,
F. Y. Li, X. H. Li, H. Jing, T. Yi and C. H. Huang, Organometallics,
2007, 26, 2077; (c) M. Schmittel and H. W. Lin, Inorg. Chem., 2007, 46,
9139; (d) Q. Zhao, S. J. Liu, F. Y. Li, T. Yi and C. H. Huang, Dalton
Trans., 2008, 3836; (e) M. L. Ho, F. M. Hwang, P. N. Chen, Y. H.
Hu, Y. M. Cheng, K. S. Chen, G. H. Lee, Y. Chi and P. T. Chou, Org.
Biomol. Chem., 2006, 4, 98; (f) J C. Araya, J. Gajardo, S. A. Moya, P.
Aguirre, L. Toupet, J. A. G Williams, M. Escadeillas, H. Le Bozec and
V. Guerchais, New J. Chem., 2010, 34, 21.
11 H. L. Chen, Q. Zhao, Y. B. Wu, F. Y. Li, H. Yang, T. Yi and C. H.
Huang, Inorg. Chem., 2007, 46, 11075.
12 (a) W. Lin, L. Yuan, Z. Cao, Y. Feng and L. Long, Chem.–Eur. J., 2009,
15, 5096; (b) G. L. Khatik, R. Kumar and A. K. Chakraborti, Org.
Lett., 2006, 8, 2433.
13 (a) W. Leslie, R. A. Poole, P. R. Murray, L. J. Yellowlees, A. Beeby and
J. A. G. Williams, Polyhedron, 2004, 23, 2769; (b) L.-Q. Song, J. Feng,
X.-S. Wang, J.-H. Yu, Y.-J. Hou, P.-H. Xie, B.-W. Zhang, J.-F. Xiang,
X.-C. Ai and J.-P. Zhang, Inorg. Chem., 2003, 42, 3393; (c) W. Leslie,
A. S. Batsanov, J. A. K. Howard and J. A. G. Williams, Dalton Trans.,
2004, 623.
Conclusions
A new iridium(III)-containing phosphorescent chemosensor for
thiol was prepared and characterized and the sensing properties
to thiol was investigated by spectroscopic and photophysical mea-
surements. In this iridium(III) complex with an a,b-unsaturated
ketone functionalized 2,2¢-bipyridyl ligand, the Ir(ppy)2(2,2¢-bpy)
chromophore serves as a signaling emitter and the a,b-unsaturated
ketone moiety as a receptor to thiol. This iridium(III) complex acts
as an “off–on” luminescent switch and a naked-eye perceivable
sensor for detection of thiol based on 1,4-addition of thiol to
a,b-unsaturated ketone. Upon formation of the 1-thiol adduct by
1,4-addition of thiol with 1 in a DMF–HEPES buffer solution
(50 mM, pH 7.2, 4 : 1, v/v), the emission intensity at ca. 587 nm
is significantly increased, which could be reasonably elucidated
by the lowest energy excited state being switched from primary
8294 | Dalton Trans., 2010, 39, 8288–8295
This journal is
The Royal Society of Chemistry 2010
©