6586
C. Blackburn et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6581–6586
C.; Richardson, P.; Palladino, M. A.; Anderson, K. C. Cancer Cell 2005, 8, 407; (d)
Groll, M.; Huber, R.; Potts, B. C. M. J. Am. Chem. Soc. 2006, 128, 5136.
14. Hogan, P. C.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 15386.
In general, we observed a good correlation between the inhibi-
tory IC50 values for 20S b5 activity in vitro and NF B-Luc activity in
j
cells, with four of the analogs (13, 14, 23, and 25) showing compa-
rable cellular potencies to those of tripeptide 4. It should be noted
that all the analogs described here are highly selective inhibitors of
the b5 sub-unit with no significant inhibitory activity (IC50
15. Imbach, P.; Lang, M.; Garcıa-Echeverrıa, C.; Guagnano, V.; Noorani, M.; Roesel,
J.; Bitsch, F.; Rihs, G.; Furet, P. Bioorg. Med. Chem. Lett. 2007, 17, 358.
16. Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.; Dick, L. R.; Grenier, L.;
Klunder, J. M.; Ma, Y.-T.; Plamondon, L.; Stein, R. L. Bioorg. Med. Chem. Lett.
1998, 8, 333.
17. (a) Richardson, P. G.; Mitsiades, C.; Schlossman, R.; Ghobrial, I.; Hideshima, T.;
Munshi, N.; Anderson, K. C. Expert Rev. Anticancer Ther. 2008, 8, 1053; (b)
O’Connor, O. A.; Czuczman, M. S. Leuk Lymphoma 2008, 49, 59; (c) Hideshima,
T.; Richardson, P.; Chauhan, D.; Palombella, V. J.; Elliott, P. J.; Adams, J.;
Anderson, K. C. Cancer Res. 2001, 61, 3071; (d) Williamson, M. J.; Blank, J. L.;
Bruzzese, F. J.; Cao, Y.; Daniels, J. S.; Dick, L. R.; Labutti, J.; Mazzola, A. M.; Patil,
A. D.; Reimer, C. L.; Solomon, M. S.; Stirling, M.; Tian, Y.; Tsu, C. A.;
Weatherhead, G. S.; Zhang, J. X.; Rolfe, M. Mol. Cancer Ther. 2006, 5, 3052; (e)
Richardson, P. G.; Barlogie, B.; Berenson, J.; Singhal, S.; Jagannath, S.; Irwin, D.;
Rajkumar, S. V.; Srkalovic, G.; Alsina, M.; Alexanian, R.; Siegel, D.; Orlowski, R.
Z.; Kuter, D.; Limentani, S. A.; Lee, S.; Hideshima, T.; Esseltine, D.-L.; Kauffman,
M.; Adams, J.; Shenkein, D. P.; Anderson, K. C. N. Eng. J. Med. 2003, 348, 2609.
18. Groll, M.; Berkers, C. R.; Ploegh, H. L.; Ovaa, H. Structure 2006, 14, 451.
19. Kupperman, E.; Lee, E. C.; Cao, Y.; Bannerman, B.; Fitzgerald, M.; Berger, A.; Yu,
J.; Yu, Y.; Bruzzese, F.; Liu, J.; Blank, J.; Garica, K.; Tsu, C.; Dick, L.; Fleming, P.;
Yu, L.; Manfredi, M.; Rolfe, M.; Bolen, J. Cancer Res. 2010, 70, 1970.
20. Piva, R.; Ruggeri, B.; Williams, M.; Costa, G.; Tamagno, I.; Ferrero, D.; Giai, V.;
Coscia, M.; Peola, S.; Massaia, M.; Pezzoni, G.; Allievi, C.; Pescalli, N.; Cassin, M.;
di Giovine, S.; Nicoli, P.; de Feudis, P.; Strepponi, I.; Roata, I.; Ferrancini, R.;
Bussolati, B.; Camussi, G.; Jones-Bolin, S.; Hunter, K.; Zhao, H.; Neri, A.;
Palumbo, A.; Berkers, C.; Huib, O.; Bernareggi, A.; Inghirami, G. Blood 2008, 111,
2765.
>20
examples showed only modest inhibitory activity at a concentra-
tion of 100
M for ten unrelated proteases.36 The cytotoxic LC50
values of these compounds in Calu6 cells also correlate with their
20S b5 potencies, indicating that selective inhibition of the chymo-
trypsin-like site of the proteasome is sufficient to inhibit cell pro-
liferation. Although none of the compounds were as potent as
bortezomib, five examples gave cytotoxicity LC50 values below
500 nM and compound 25, with an LC50 of 95 nM, showed superior
lM) of human b1 and b2 sub-units. In addition, representative
l
activity to that of 4 (Table 1) tracking the NFjB-Luc activity in
HEK293 cells. These data further support the notion that selective
non-covalent inhibition of the b5 (chymotrypsin-like) site of the
proteasome is sufficient to inhibit the degradation of TNF
a-depen-
dent NF B activity and the proliferation of cancer cells. Several
j
compounds reported here have comparable or greater potencies
than any previously reported non-covalent inhibitor. In addition,
co-crystals of compounds 24 and 25 bound to the b5 active site
of yeast 20S unequivocally demonstrate the binding mode of this
series of compounds and providing further opportunities for
optimization.
21. (a) Koguchi, Y.; Kohno, J.; Nishio, M.; Takahashi, K.; Okuda, T.; Ohnuki, T.;
Komatsubara, S. J. Antibiotics (Tokyo) 2000, 53, 105; (b) Groll, M.; Koguchi, Y.;
Huber, R.; Kohno, J. J. Mol. Biol. 2002, 311, 543.
22. Groll, M.; Gotz, M.; Kaiser, M.; Weyher, E.; Moroder, L. Chem. Biol. 2006, 13, 607.
23. Basse, N.; Piguek, S.; Papapostolou, D.; Ferrier-Berthelot, A.; Richey, N.; Pagano,
M.; Sarthou, P.; Sobczak-Thepot, J.; Reboud-Ravaux, M.; Vidal, J. J. Med. Chem.
2007, 50, 2842.
Acknowledgements
24. García-Echeverría, C.; Imbach, P.; France, D.; Furst, P.; Lang, M.; Noorani, M.;
Scholz, D.; Zimmermann, J.; Furet, P. Bioorg. Med. Chem. Lett. 2001, 11, 1317.
25. Furet, P.; Imbach, P.; Furst, P.; Lang, M.; Noorani, M.; Zimmermann, J.; Garcia-
Echeverria, C. Bioorg. Med. Chem. Lett. 2001, 11, 1321.
26. Furet, P.; Imbach, P.; Furst, P.; Lang, M.; Noorani, M.; Zimmermann, J.; Garcia-
Echeverria, C. Bioorg. Med. Chem. Lett. 2002, 12, 1331.
27. Furet, P.; Imbach, P.; Noorani, M.; Koeppler, J.; Laumen, K.; Lang, M.; Guagnano,
V.; Fuerst, P.; Roesel, J.; Garcia-Echeverria, C. J. Med. Chem. 2004, 47, 4810.
28. (a) Lum, R. T.; Kerwar, S. S.; Meyer, S. M.; Nelson, M. G.; Schow, S. R.; Shiffman,
D.; Wick, M. M.; Joy, A. Biochem. Pharmacol. 1998, 55, 1391; (b) Lum, R. T.;
Nelson, M. G.; Joly, A.; Horsma, A. G.; Lee, G.; Meyer, S. M.; Wick, M. M.; Schow,
S. R. Bioorg. Med. Chem. Lett. 1998, 8, 209.
We are grateful to Drs. Marion Schmidt and Dan Finley for pro-
viding the yeast 20S expression strains and to Dr. Juan Gutierrez
and Zhi Li their assistance with preparation of the yeast 20S en-
zymes. We gratefully acknowledge the analytical chemistry assis-
tance of David Lok and Nina Molchanova.
Supplementary data
Supplementary data associated with this article can be found, in
29. Blackburn, C.; Achab, A.; Blank, J.; Bump, N.; Bruzzese, F.; Dick, L.; Fleming, P.;
Garcia, K.; Gigstad, K.; Hales, P.; Herman, L.; Jones, M.; Li, Z.; Liu, J.;
Mishechkina, A.; Nagayoshi, M.; Sappal, D.; Sintchak, M.; Tsu, C. Abstracts,
36th Northeast Regional Meeting of the American Chemical Society, Hartford, CT,
United States, October 7–10, NERM-055, 2009.
References and notes
30. Blackburn, C.; Gigstad, K.; Hales, P.; Garcia, K.; Jones, M.; Bruzzese, F.; Barrett,
C.; Liu, J.; Soucy, T.; Sappal, D.; Bump, N.; Olhava, E.; Fleming, P.; Dick, L. R.; Tsu,
C.; Sintchak, M.; Blank, J. L. Biochem. J. 2010, 430, 461.
31. All final compounds were purified by preparative reverse phase HPLC using
mass-directed fraction collection conducted on an Agilent 1100 series LC/MSD
1. (a) Hochstrasser, M. Curr. Opin. Cell Biol. 1995, 7, 215; (b) Hershko, A.;
Ciechanover, A. Ann. Rev. Biochem. 1998, 67, 425; (c) Goldberg, A. L. Biochem.
Soc. Trans. 2007, 35, 12.
2. Kisselev, A. F.; Goldberg, A. L. Chem. Biol. 2001, 8, 739.
3. Borissenko, L.; Groll, M. Chem. Rev. 2007, 107, 687.
instrument using
a
Waters SunFire C18
5
l
m
Prep OBD column
(19 ꢀ 150 mm). The compounds were eluted with a water–MeCN gradient
(0.1% formic acid) optimized by the A2Prep Agilent software. All compounds
described herein were further characterized by 1H NMR spectroscopy and high
resolution mass spectrometry.
4. Adams, J.; Palombella, V. J.; Sausville, E. A.; Johnson, J.; Destree, A.; Lazarus, D.
D.; Maas, J.; Pien, C. S.; Prakash, S.; Elliott, P. J. Cancer Res. 1999, 59, 2615.
5. Orlowski, R. Z.; Kuhn, D. J. Clin. Cancer Res. 2008, 14, 1649.
6. Loewe, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W.; Huber, R. Science 1995,
268, 533.
7. Groll, M.; Ditzel, S.; Lowe, J.; Stock, D.; Bochtler, M.; Bartunik, H. D.; Huber, R.
Nature 1997, 386, 463.
8. García-Echeverria, C. Int. J. Pept. Res. Ther. 2006, 12, 49.
9. Groll, M.; Huber, R.; Moroder, L. J. Pept. Sci. 2009, 15, 58.
10. Dick, L. R.; Fleming, P. E. Drug Discovery Today 2010, 15, 243.
11. (a) Meng, L.; Mohan, R.; Kwok, B. H. B.; Eloffson, M.; Sin, N.; Crews, C. M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 10403; (b) Kuhn, D. J.; Chen, Q.; Voorhees, P. M.;
Strader, J. S.; Shenk, K. D.; Sun, C. M.; Demo, S. D.; Bennett, M. K.; van Leeuwen,
F. W. B.; Chanan-Khan, A. A.; Orlowski, R. Z. Blood 2007, 110, 3281; (c) Groll, M.;
Kim, K. B.; Kairies, N.; Huber, R.; Crews, C. M. J. Am. Chem. Soc. 2000, 122, 1237.
12. Rydzewski, R. M.; Burrill, M.; Mendonca, R.; Palmer, J. T.; Rice, M.; Tahilramani,
R.; Bass, K. E.; Leung, L.; Gjerstad, E.; Janc, J. W.; Pan, L. J. Med. Chem. 2006, 49,
2953.
13. (a) Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.;
Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355; (b) Reddy, L. R.; Fournier, J.-F.;
Reddy, B. V. S.; Corey, E. J. Org. Lett. 2005, 7, 2699; (c) Chauhan, D.; Catley, L.; Li,
G.; Podar, K.; Hideshima, T.; Velankar, M.; Mitsiades, C.; Mitsiades, N.; Yasui,
H.; Letai, A.; Ovaa, H.; Berkers, C.; Nicholson, B.; Chao, T.-H.; Neuteboom, S. T.
32. Palombella, V. J.; Rando, O. J.; Goldberg, A. L.; Maniatis, T. Cell 1994, 78, 773.
33. Representative turbidometric solubilities were obtained by sequential
dilutions of 10 mM DMSO stock solutions into 50 mM potassium
phosphate buffer at pH 6.8. Measurements were made on
Nepheloskan Ascent plate reader equipped with quartz halogen lamp
emitting between 580 and 630 nm giving the following solubility results: 4:
M; 5; 3 M; 6: 50 M; 7: 50 M; 8: 50 M; 9: 25 M; 10: 12 M; 11:
M; 12: 100 M.
a Labsystems
a
6
l
l
l
l
l
l
l
50
l
l
34. Given the close correlation in potencies of proteasome inhibitors from various
classes for the human and yeast 20S enzymes,30 we are confident optimizing
compounds for human 20S inhibitory activity based on X-ray structures
obtained with yeast 20S.
35. Co-crystals of the y20S proteasome with inhibitors 24 and 25 were solved with
resolutions of 2.85 Å and 2.5 Å, respectively (see Supplementary data).
36. Protease selectivity was assessed by testing the inhibitory activities of
representative compounds on a panel of purified human enzymes including
cathepsin B and L, coagulation factor b-XIIa, chymotrypsin, elastase, plasmin,
thrombin, tissue plasminogen activator, trypsin and calpain I.