Bicyclic ꢀ-Amino Acid Bearing 7-Azabicyclo[2.2.1]heptane
A R T I C L E S
Figure 2. (A) 2,2-Disubstituted-pyrrolidine-4-carboxylic acid. (B) ꢀ-Amino acid bearing 7-azabicyclo[2.2.1]heptane and (C) homooligomers of (B) described
in the previous study.11 (D) 1,3-Allylic strain of bicyclic amides.
of alkyl group(s) at the R-position of the nitrogen atom,6,7 etc.)
or stereoelectronically (by use of the gauche effect, which
influences puckering of the pyrrolidine ring, leading to direct
interaction of the amide linkage and the carboxylic functional-
ity,8 etc.). In most cases, the trans-amide structure was favored
over the cis-amide, although 5,5-dimethyl-R-proline6c,d and its
oxazolidine and thiazolidine analogues7 drove the equilibrium
toward the cis-amide. Thus, steric and stereoelectronic factors
can be used to modify the cis-trans amide isomerization to
various extents, but complete control of cis-trans amide
isomerization to obtain a single conformer is very difficult, even
in the case of R-proline derivatives.
homogeneous secondary structures would be obtained, leading
to length-independent induction of ordered structures.
Recently, the synthesis and crystallographic and CD/UV
spectral analyses of ꢀ-amino acid homooligomers based on
bicyclic 7-azabicyclo[2.2.1]heptane have been studied (B and
C, Figure 2).11 The bicyclic skeleton was found to constrain
the torsion angles (φ, θ, and ψ) along the main chain (B).12
This rigid bicyclic system was proposed to drive the formation
of CD-active ordered structures of the long oligomers. Further-
more, the present bicyclic structure and the presence of two
bridgehead hydrogen atoms of the 7-azabicyclo[2.2.1]heptane
amide have a great influence on amide planarity: they promote
nitrogen pyramidalization and twisting of the amide linkage,
while monocyclic amides such as the pyrrolidine amides take
planar structures.13 This nonplanarity stems from angle strain
of the bicyclic structure and 1,3-allylic-type strain between the
amide moiety and the bridgehead hydrogen atoms (D, Figure
2). Therefore, we expected that bridgehead substitution of the
relevant bicylic skeleton could influence cis-trans isomerization
oftheamidegrouptoagreatextent.The7-azabicyclo[2.2.1]heptane
structure is also contained in epibatidine, a biologically active
alkaloid, as the basic skeleton, and thus synthetic access to this
ring system has been well investigated in the past.14-16
In this study, we established synthetic methods leading to
conformationally constrained ꢀ-proline mimics, that is, bridge-
head-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic
acid (e.g., 3 in Figure 4). We studied the robustness of secondary
structures of the homooligomers and found that bridgehead
substitution completely biased the cis-trans equilibrium to the
cis-amide structure (along the main chain). Helical structures
based on the cis-amide linkage were generated independently
of the number of the residues, from the minimalist dimer through
the tetramer, hexamer, and up to the octamer, and irrespective
of the solvent, including water, alcohol, halogenated solvents,
While control of cis-trans equilibrium of R-proline deriva-
tives has been studied intensively, that of tertiary amide-type
ꢀ-amino acids has been little explored,9 probably because the
N-amide linkage in a ꢀ-amino acid is distal from the intraresidual
carboxylic acid functionality and direct interaction is ineffective.
As a precedent of non-hydrogen-bonding ꢀ-peptides, 2,2-
disubstituted-ꢀ-proline (2,2-disubstituted-pyrrolidine-4-carboxy-
lic acid, A, Figure 2) oligomers have been studied,10 and length-
dependent induction of helical structures has been demonstrated.
If full control of cis-trans isomerization of ꢀ-tertiary amides,
that is, suppression of the contributions of interconverting
rotamers, and that of torsion angles (φ, θ, and ψ) along the
main chain (in A, Figure 2) could be achieved, conformationally
(6) (a) Be´lec, L.; Slaninova, J.; Lubell, W. D. J. Med. Chem. 2000, 43,
1448–1455. (b) Swarbrick, M. E.; Gosselin, F.; Lubell, W. D. J. Org.
Chem. 1999, 64, 1993–2002. (c) Magaard, V. W.; Sanchez, R. M.;
Bean, J. W.; Moore, M. L. Tetrahedron Lett. 1993, 34, 381–384. (d)
An, S. S. A.; Lester, G. C.; Peng, J. L.; Li, Y. J.; Rothwarf, D. M.;
Welker, E.; Thannhauser, T. W.; Zhang, L. S.; Tam, J. P.; Scheraga,
H. A. J. Am. Chem. Soc. 1999, 121, 11558–11566.
(7) For examples of cis-prolyl conformations with pseudoprolines, see:
(a) Wittelsberger, A.; Keller, M.; Scarpellino, L.; Patiny, L.; Acha-
Orbea, H.; Mutter, M. Angew. Chem., Int. Ed. 2000, 39, 1111–1115.
(b) Keller, M.; Sager, C.; Dumy, P.; Schutkowski, M.; Fischer, G. S.;
Mutter, M. J. Am. Chem. Soc. 1998, 120, 2714–2720, and references
therein.
(11) Otani, Y.; Futaki, S.; Kiwada, T.; Sugiura, Y.; Muranaka, A.;
Kobayashi, N.; Uchiyama, M.; Yamaguchi, K.; Ohwada, T. Tetrahe-
dron 2006, 62, 11635–11644.
(12) Ab initio calculations of the cis- and trans-dimers of the bicyclic
ꢀ-amino acid B ((S)-enantiomer) suggested that φ, θ, and ψ converged
to-86°,-162°, and-75°, respectively, while ψ had one additional
minimum at-95° within 0.1 kcal/mol difference.
(13) Otani, Y.; Nagae, O.; Naruse, Y.; Inagaki, S.; Ohno, M.; Yamaguchi,
K.; Yamamoto, G.; Uchiyama, M.; Ohwada, T. J. Am. Chem. Soc.
2003, 125, 15191–15199.
(8) (a) Eberhardt, E. S.; Panasik, N.; Raines, R. T. J. Am. Chem. Soc.
1996, 118, 12261–12266. (b) Bretscher, L. E.; Jenkins, C. L.; Taylor,
K. M.; DeRider, M. L.; Raines, R. T. J. Am. Chem. Soc. 2001, 123,
777–778.
(9) (a) Abele, S.; Vo¨gtli, K.; Seebach, D. HelV. Chim. Acta 1999, 82,
1539–1558. (b) Huck, B. R.; Langenhan, J. M.; Gellman, S. H. Org.
Lett. 1999, 1, 1717–1720. For examples of peptoid oligomers and other
tertiary amide oligomers, see: (c) Fowler, S. A.; Blackwell, H. E. Org.
Biomol. Chem. 2009, 7, 1508–1524. (d) Wu, C. W.; Kirshenbaum,
K.; Sanborn, T. J.; Patch, J. A.; Huang, K.; Dill, K. A.; Zuckermann,
R. N.; Barron, A. E. J. Am. Chem. Soc. 2003, 125, 13525–13530. (e)
Bernardi, F.; Garavelli, M.; Scatizzi, M.; Tomasini, C.; Trigari, V.;
Crisma, M.; Formaggio, F.; Peggion, C.; Toniolo, C. Chem.-Eur. J.
2002, 8, 2516–2525. (f) Crisma, M.; Moretto, A.; Toniolo, C.;
Kaczmarek, K.; Zabrocki, J. Macromolecules 2001, 34, 5048–5052.
(10) (a) Huck, B. R.; Fis, J. D.; Guzei, I. A.; Carlson, H. A.; Gellman,
S. H. J. Am. Chem. Soc. 2003, 125, 9035–9037. (b) Huck, B. R.;
Gellman, S. H. J. Org. Chem. 2005, 70, 3353–3362.
(14) For example: (a) Herna´ndez, A.; Marcos, M.; Rapoport, H. J. Org.
Chem. 1995, 60, 2683–2691. (b) Campbell, J. A.; Rapoport, H. J. Org.
Chem. 1996, 61, 6313–6325. (c) Bai, D.; Xu, R.; Chu, G.; Zhu, X. J.
Org. Chem. 1996, 61, 4600–4606. (d) Singh, S.; Basmadjian, G. P.
Tetrahedron Lett. 1997, 38, 6829–6830. (e) Pandey, G.; Bagul, T. D.;
Sahoo, A. K. J. Org. Chem. 1998, 63, 760–768, refs 15 and 16 and
references therein.
(15) Corey, E. J.; Loh, T.-P.; AchyuthaRao, S.; Daley, D. C.; Sarshar, S.
J. Org. Chem. 1993, 58, 5600–5602.
(16) Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.; Hobbs,
S. C.; Thomas, S. R.; Verrier, H. S. M.; Watt, A. P.; Ball, R. G. J.
Org. Chem. 1994, 59, 1771–1778.
9
J. AM. CHEM. SOC. VOL. 132, NO. 42, 2010 14781