Table 1. Linear and Nonlinear Optical Properties
a
a
λabs
εa
λem
∆ν˜b
δ/GM
nm
M-1 cm-1
nm
103cm-1
Φc
(λ/nm)d
Φδ/GM
Tr
8
316
323
335
344
383
402
396
399
412
427
8.0 × 104
3.0 × 104
6.8 × 104
1.4 × 105
1.2 × 105
1.8 × 105
1.2 × 105
1.0 × 105
1.1 × 105
1.1 × 105
397
396
410
428
429
456
506
516
516
543
6.5
5.7
5.5
5.7
2.8
2.9
5.5
5.7
4.9
5.0
0.17
0.15
0.14
0.19
0.55
0.42
0.43
0.60
0.33
0.40
nondetectable
nondetectable
nondetectable
2.1 × 101 (720)
3.6 × 101 (810)
4.0 × 102 (810)
8.7 × 102 (810)
1.9 × 103 (810)
2.1 × 103 (810)
2.5 × 103 (820)
-
-
-
3-SiT
2-SiT
3-NET
2-NET
3-BYT
2-BYT
3-BET
2-BET
0.40
2.0 × 101
1.7 × 102
3.7 × 102
1.1 × 103
6.9 × 102
1.0 × 103
a Linear optical properties in 2 µM THF. b Stokes shift. c Quantum yield. d TPA cross section (100 µM in THF), coumarin 307 (100 µM in MeOH) as
standard,15 1 GM ) 10-50 cm4 s molecule-1 photon-1
.
and 2-BET. The 3-BYT and 2-BYT are the results of
replacing ethenylene by an ethynylene group. The terminal
dimesitylboryl-B(Mes)2 group acts as the electron acceptor
and fluorophore.13 The donor end-capped D(π-D)3 type of
compounds, namely, 3-NET and 2-NET, are also synthesized
for comparison study.
Sonogashira coupling of 2-BrT (or 3-BrT) and trimethylsi-
lylacetylene goes smoothly with high yield when catalyzed by
PdCl2(dppf), whereas Pd(PPh3)2Cl2 resulted in much lower yield
in a similar reaction.14 The resultant 2-SiT and 3-SiT were
deprotected yielding 2-YT and 3-YT, which were then coupled
with 9 to produce 2-BYT and 3-BYT, respectively.
The 3,8,13- or 2,7,12-substitution has been confirmed by
a satisfactory X-ray structure determination of 6, 3-SiT, and
2-SiT (see SI) and can also be conveniently identified by
1H NMR of the proton on C4. As shown in Figure 1, at the
As shown in Scheme 1, 2-BrT and 3-BrT precursors were
synthesized by trimerization of 3 and 6 in POCl3, respectively.14
Direct bromination of 5 will provide 6, rather than 3, as
confirmed by the X-ray structure of 6 (see Supporting Informa-
tion (SI)). Compound 3 was prepared by reduction of 2.
2-BET (or 3-BET) was synthesized through Heck cou-
pling of 2-BrT (or 3-BrT) with 8 in the presence of Et3N,
Pd(OAc)2, and P(o-tol)3 at 110 °C under N2. This concurred
with the reports that the -B(Mes)2 group is stable in
palladium-catalyzed conditions.13b,e
(6) Mongin, O.; Brunel, J.; Porres, L.; Blanchard-Desce, M. Tetrahedron
Lett. 2003, 44, 2813–2816.
(7) Zheng, Q.; He, G. S.; Prasad, P. N. Chem. Mater. 2005, 17, 6004–
6011.
(8) Beljonne, D.; Wenseleers, W.; Zojer, E.; Shuai, Z.; Vogel, H.; Pond,
S. J. K.; Perry, J. W.; Marder, S. R.; Bredas, J.-L. AdV. Funct. Mater. 2002,
12, 631–641.
1
(9) Robertson, N.; Parsons, S.; Maclean, E. J.; Coxall, R. A.; Mount,
A. R. J. Mater. Chem. 2000, 10, 2043–2047. See also the Supporting
Information of this work.
Figure 1
.
Low-field region of H NMR spectra of some 3,8,13-
and 2,7,12-substituted compounds in CDCl3.
(10) (a) Zhao, B.; Liu, B.; Png, R. Q.; Zhang, K.; Lim, K. A.; Luo, J.;
Shao, J.; Ho, P. K. H.; Chi, C.; Wu, J. Chem. Mater. 2010, 22, 435–449.
(b) Gomez-Lor, B.; Alonso, B.; Omenat, A.; Serrano, J. L. Chem. Commun.
2006, 5012–5014. (c) Luo, J.; Zhao, B.; Shao, J.; Lim, K. A.; Chan, H. S. O.;
Chi, C. J. Mater. Chem. 2009, 19, 8327–8334.
1
lowest field side of the spectra, the H NMR signal of the
1H-C4 of the 3,8,13-substituted triindole derivatives is
invariably singlet, while that of the 2,7,12-substituted
counterpart is always doublet at relatively higher field.
All the target compounds show high photostability and exhibit
strong one-photon absorption (see Table 1), which can be
thought of as a prerequisite for large TPA. The Tr and 8
building blocks show almost the same peak wavelength, in both
the absorption and emission spectra. When joining them up,
the spectra of the resultant compounds are greatly red-shifted.
The peak wavelength of the absorption and fluorescence
spectra and the Stokes shifts of all the 2,7,12-substituted
(11) (a) Talarico, M.; Termine, R.; Garcia-Frutos, E. M.; Omenat, A.;
Serrano, J. L.; Gomez-Lor, B.; Golemme, A. Chem. Mater. 2008, 20, 6589–
6591. (b) Garcia-Frutos, E. M.; Gutierrez-Puebla, E.; Monge, M. A.;
Remirez, R.; Andres, P.; Andres, A.; Ramirez, R.; Gomez-Lor, B. Org.
Electron. 2009, 10, 643–652.
(12) Lai, W.-Y.; He, Q.-Y.; Zhu, R.; Chen, Q.-Q.; Huang, W. AdV. Funct.
Mater. 2008, 18, 265–276.
(13) (a) Liu, Z.-Q.; Fang, Q.; Wang, D.; Cao, D.-X.; Xue, G.; Yu, W.-
T.; Lei, H. Chem.sEur. J. 2003, 9, 5074–5084. (b) Collings, J. C.; Poon,
S.-Y.; Droumaguet, C. L.; Charlot, M.; Katan, C.; Palsson, L.-O.; Beeby,
A.; Mosely, J. A.; Kaiser, H. M.; Kaufmann, D.; Wong, W.-Y.; Blanchard-
Desce, M.; Marder, T. B. Chem.sEur. J. 2009, 15, 198–208. (c) Charlot,
M.; Porres, L.; Entwistle, C. D.; Beeby, A.; Marder, T. B.; Blanchard-
Desce, M. Phys. Chem. Chem. Phys. 2005, 7, 600–606. (d) Zhao, C.-H.;
Wakamiya, A.; Inukai, Y.; Yamaguchi, S. J. Am. Chem. Soc. 2006, 128,
15934–15935. (e) Zhao, S.-B.; Wucher, P.; Hudson, Z. M.; McCormick,
T. M.; Liu, X.-Y.; Wang, S.; Feng, X.-D.; Lu, Z.-H. Organometallics 2008,
27, 6446–6456.
(14) Hiyoshi, H.; Kumagai, H.; Ooi, H. EP Patent 1 717 239 A1, 2006.
(15) Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481–491.
5194
Org. Lett., Vol. 12, No. 22, 2010